首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons. We tested the hypothesis that proteomic analysis will identify protein biomarkers that provide insight into disease pathogenesis and are diagnostically useful. To identify ALS specific biomarkers, we compared the proteomic profile of cerebrospinal fluid (CSF) from ALS and control subjects using surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). We identified 30 mass ion peaks with statistically significant (p < 0.01) differences between control and ALS subjects. Initial analysis with a rule-learning algorithm yielded biomarker panels with diagnostic predictive value as subsequently assessed using an independent set of coded test subjects. Three biomarkers were identified that are either decreased (transthyretin, cystatin C) or increased (carboxy-terminal fragment of neuroendocrine protein 7B2) in ALS CSF. We validated the SELDI-TOF-MS results for transthyretin and cystatin C by immunoblot and immunohistochemistry using commercially available antibodies. These findings identify a panel of CSF protein biomarkers for ALS.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a progressive and seriously disabling adult-onset neurological disease. Accumulating evidence indicates that various miRNAs, expressed in a spatially and temporally controlled manner in the brain, play a key role in neuronal development. In addition, misregulation of microRNAs contributes to some mental disorders and neurodegeneration diseases. Here, we analyzed the expression profiles of 911 human miRNAs using microarray technology in leukocytes, the most readily available human tissue cells, obtained from 8 patients affected by sporadic amyotrophic lateral sclerosis (sALS) and 12 healthy controls. An independent group of 14 sALS patients and 14 controls was used for validation by TaqMan real-time polymerase chain reaction assay. We identified 8 miRNAs that were significantly up- or downregulated in sALS patients as compared to healthy controls. The significant variations in miRNAs profiles detected in leukocytes have been related to miRNAs predominantly expressed in the nervous system. One of these miRNAs, miR-338-3p, has previously been shown to be de-regulated in ALS brains. This study, for the first time, detected specific microRNAs disease-related changes at an earlier stage of sALS. We suggest that miRNAs profiles found in the peripheral blood leukocytes from sALS patients can be relevant to understand the pathogenesis of sALS and/or used as biomarkers of the disease.  相似文献   

3.
The intraneuronal aggregation of phosphorylated high-molecular-weight neurofilament protein (NFH) in spinal cord motor neurons is considered to be a key pathological marker of amyotrophic lateral sclerosis (ALS). In order to determine whether this observation is due to the aberrant or hyper-phosphorylation of NFH, we have purified and characterized NFH from the cervical spinal cords of ALS patients and controls. We observed no differences between ALS and normal controls in the physicochemical properties of NFH in Triton X-100 insoluble protein fractions, with respect to migration patterns on 2D-iso electrofocusing (IEF) gels, the rate of Escherichia coli alkaline phosphatase mediated dephosphorylation, or the rate of calpain-mediated proteolysis. The rate of calpain-mediated proteolysis was unaffected by either exhaustive NFH dephosphorylation or by the addition of calmodulin to the reaction. Phosphopeptides and the phosphorylated motifs characterized by liquid chromatography tandem mass spectroscopy (LC/MS/MS) analysis demonstrated that all the phosphorylated residues found in ALS NFH were also found to be phosphorylated in normal human NFH samples. Hence, we have observed no difference in the physicochemical properties of normal and ALS NFH extracted from cervical spinal cords, suggesting that the perikaryal aggregation of highly phosphorylated NF in ALS neurons reflects the aberrant somatotopic localization of normally phosphorylated NFH.  相似文献   

4.
The statistical tests analysis of variance, analysis of covariance, correlation coefficient, Kolmogorov-Smirnov test,t-test, and Tukey test were applied to copper, magnesium, managenese, and zinc content in serum (S) and in cerebrospinal fluid (CSF) of controls and of a sporadic form of Amyotrophic Lateral Sclerosis (ALS) disease. This is carried out in order to evaluate statistically the possible relationships among the trace elements when ALS patients and controls are considered as independent groups, within sex groups and within age decades of both patients and control classes. A statistically significant difference between older controls (age >40) and ALS patients (age>40) for copper in CSF, copper in S, manganese in S, and zinc in CSF was found. Statistically significant correlation coefficients within the different classes formed for this study were observed. Within this pool, a correlation of patient group can differ statistically from the corresponding one of controls and vice versa. Thus, this correlation could be characteristic of the group from which is extracted, e.g., the correlation between copper in S and zinc in S, which is characteristic of ALS patients when considered as an independent group as well as members of the male patient class.  相似文献   

5.
Nogo/reticulon (RTN)-4 has been strongly implicated as a disease marker for the motor neuron disease amyotrophic lateral sclerosis (ALS). Nogo isoforms, including Nogo-A, are ectopically expressed in the skeletal muscle of ALS mouse models and patients and their levels correlate with the disease severity. The notion of a direct involvement of Nogo-A in ALS aetiology is supported by the findings that Nogo-A deletion in mice reduces muscle denervation and prolongs survival, whereas overexpression of Nogo-A destabilizes motor nerve terminals and promotes denervation. Another intriguing, and somewhat paradoxical, recent finding revealed that binding of the Nogo-66 receptor (NgR) by either agonistic or antagonistic Nogo-66-derived peptides protects against p75 neurotrophin receptor (p75(NTR))-dependent motor neuron death. Ligand binding by NgR could result in subsequent engagement of p75(NTR), and this association could preclude pro-apoptotic signalling by the latter. Understanding the intricate interplay among Nogo isoforms, NgR and p75(NTR) in ALS disease progression may provide important, therapeutically exploitable information.  相似文献   

6.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


7.
Calcineurin (CaN) is a Ser/Thr protein phosphatase involved in a wide range of cellular responses to calcium mobilizing signals. Previous evidence supports the notion that calcineurin is oxidatively inhibited by mutant Cu, Zn superoxide dismutase (SOD1) typical of familial ALS patients in vitro and in transgenic mice. We report that calcineurin activity is markedly inhibited in lymphocytes from 37 sporadic, eight familial ALS patients and an asymptomatic subject carrying an SOD1 mutation as compared to 28 healthy controls. Two other healthy subjects, heterozygous for the D90A mutation from a recessive pedigree, have normal calcineurin activity. Immunoreactive CaN protein, age, sex and riluzole treatment are not related to calcineurin activity in samples from patients. However, we have observed a marked increase in total protein oxidation in extracts from ALS lymphocytes, as compared to extracts from control subjects. These data confirm that modification of calcineurin activity and possibly of calcineurin-mediated pathways of signal transduction (including modulation of apoptotic neuronal death) may contribute to the pathogenesis of ALS.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons (MNs), resulting in paralysis and precocious death from respiratory failure. Although the causes of ALS are incompletely understood, the role of alterations in RNA metabolism seems central. MicroRNAs (miRNAs) are noncoding RNAs implicated in the regulation of gene expression of many relevant physiological processes, including cell death. The recent model of programmed cell death (PCD) encompasses different mechanisms, from apoptosis to regulated necrosis (RN), in particular necroptosis. Both apoptosis and necroptosis play a significant role in the progressive death of MNs in ALS. In this review, we present key research related to miRNAs that modulate apoptosis and RN pathways in ALS. We also discuss whether these miRNAs represent potential targets for therapeutic development in patients.  相似文献   

9.
This editorial addresses the current challenges and future directions in the use of stem cells as an approach for treating amyotrophic lateral sclerosis. A wide variety of literature has been reviewed to enlighten the reader on the many facets of stem cell research that are important to consider before using them for a cell based therapy.  相似文献   

10.
Pigment epithelium-derived factor (PEDF), a recently defined retinal trophic factor and anti-angiogenic factor for the eye, is also present in the CNS and is a motor neuron protectant. We asked whether PEDF levels in CSF are altered in patients with amyotrophic lateral sclerosis (ALS). Pigment epithelium-derived factor protein was detected by quantitative western blot analysis with a PEDF-specific antiserum. Levels of PEDF in CSF, expressed as a ratio to total CSF protein, were significantly elevated 3.4-fold in 15 patients with ALS compared with neurologic disease controls (p < 0.0003). This increase does not seem likely to reflect up-regulation of PEDF synthesis in muscle in response to denervation, as CSF PEDF was not elevated in severe denervating diseases other than ALS. Nor does the increase represent some non-specific release in neurodegeneration, as CSF PEDF was not elevated in other neurodegenerative diseases. While the mechanism of this presumably reactive increase is not known, the distinctive, surprisingly elevated level of PEDF in the CSF may be an autoprotective reaction in ALS.  相似文献   

11.
The Kinetworks trade mark multi-immunoblotting technique was used to evaluate the expressions of 78 protein kinases, 24 protein phosphatases and phosphorylation states of 31 phosphoproteins in thoracic spinal cord tissue from control subjects and patients having the sporadic form of amyotrophic lateral sclerosis (ALS). In both the cytosolic (C) and particulate (P) fractions of spinal cord from ALS patients as compared with controls, there were increased levels of calcium/calmodulin-dependent protein kinase kinase (CaMKK; C = 120% increase/P = 580% increase;% change, compared with control), extracellular regulated kinase 2 (ERK2; C = 120% increase/P = 170% increase), G protein-coupled receptor kinase 2 (GRK2; C = 140% increase/P = 140% increase), phospho-Y279/216 glycogen synthase kinase 3 alpha/beta (GSK3alpha/beta; C = 90% increase/P = 220% increase), protein kinase B alpha (PKBalpha; C = 360% increase/P = 200% increase), phospho-T638 PKCalpha/beta (C = 630% increase/P = 170% increase), cGMP-dependent protein kinase (PKG; C = 100% increase/P = 75% increase), phospho-T451 dsRNA-dependent protein kinase (PKR; C = 2600% increase/P = 3330% increase), ribosomal S6 kinase 1 (RSK1; C = 750% increase/P = 630% increase), phospho-T389 p70 S6 kinase (S6K; C = 1000% increase/P = 460% increase), and protein-tyrosine phosphatase 1 delta (PTP1delta; C = 43% increase/P = 70% increase). Cytosolic increases in phospho-alpha-S724/gamma-S662 adducin (C = 15650% increase), PKCalpha (C = 100% increase) and PKCzeta (C = 190% increase) were found in ALS patients as compared with controls, while particulate increases in cAMP-dependent protein kinase (PKA; 43% increase), protein kinase C beta (PKCbeta; 330% increase), and stress-activated protein kinase beta (SAPKbeta; 34% increase) were also observed. Cyclin-dependent kinase-associated phosphatase (KAP) was apparently translocated, as it was reduced (31% decrease) in cytosolic fractions but elevated (100% increase) in particulate fractions of ALS spinal cord tissue. Our observations indicate that ALS is associated with the elevated expression and/or activation of many protein kinases, including PKCalpha, PKCbeta, PKCzeta and GSK3alpha/beta, which may augment neural death in ALS, and CaMKK, PKBalpha, Rsk1, S6K, and SAPK, which may be a response to neuronal injury that potentially can mitigate cell death.  相似文献   

12.
Several of the superoxide dismutase-1 (SOD1) mutations linked to amyotrophic lateral sclerosis (ALS) lead to synthesis of structurally defective molecules, suggesting that any cytotoxic conformational species common for all mutations should be misfolded. SOD1 can be secreted and evidence from ALS model systems suggests that extracellular SOD1 may be involved in cytotoxicity. Three ELISAs specifically reacting with different sequence segments in misfolded SOD1 species were used for analysis of CSF from 38 neurological controls and from 96 ALS patients, 57 of whom were sporadic cases and 39 familial, including 22 patients carrying SOD1 mutations. Misfolded SOD1 was found in all samples. There were, however, no significant differences between patients with and without mutations, and between all the ALS patients and the controls. The estimated concentration of misfolded SOD1 in the interstitium of the CNS is a 1000 times lower than that required for appreciable cytotoxicity in model systems. The results argue against a direct cytotoxic role of extracellular misfolded SOD1 in ALS. Misfolded SOD1 in CSF cannot be used as a biomarker of ALS in patients with and without mutations in the enzyme.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative condition that is invariably fatal, usually within 3 to 5 years of diagnosis. The etiology of ALS remains unresolved and no effective treatments exist. There is therefore a desperate and unmet need for discovery of disease mechanisms to guide novel therapeutic strategies. The single major risk factor for ALS is aging, yet the molecular consequences of cell type‐specific aging remain understudied in this context. Induced pluripotent stem cells (iPSCs) have transformed the standard approach of examining human disease, generating unlimited numbers of disease‐relevant cells from patients, enabling analysis of disease mechanisms and drug screening. However, reprogramming patient cells to iPSCs reverses key hallmarks of cellular age. Therefore, although iPSC models recapitulate some disease hallmarks, a crucial challenge is to address the disparity between the advanced age of onset of neurodegenerative diseases and the fetal‐equivalent maturational state of iPSC‐derivatives. Increasing recognition of cell type‐specific aging paradigms underscores the importance of heterogeneity in ultimately tipping the balance from a state of compensated dysfunction (clinically pre‐symptomatic) to decompensation and progression (irreversible loss of neurological functions). In order to realize the true promise of iPSC technology in ALS, efforts need to prioritize faithfully recapitulating the clinical pathophysiological state, with proportionate emphasis on capturing the molecular sequelae of both cellular age and non‐cell‐autonomous disease mechanisms within this context.  相似文献   

14.
目的:研究肌萎缩侧索硬化(ALS)患者肌电图检查中异常F波与束颤波的特点及其相关性。方法:收集2016年9月至2018年2月就诊于浙江大学医学院附属第二医院神经内科的54例ALS患者,进行常规肌电图检查和F波测定,记录216条正中神经、胫后神经的F波以及324块肌肉的束颤波相关参数,计算F波出现率、巨大F波、束颤波的出现率及其异常率,分析巨大F波、束颤波与病程的关系以及巨大F波和束颤波之间的关联性。结果:F波出现率的异常率88.89%,巨大F波出现率55.56%,束颤波出现率48.15%;有束颤波的病程与没有束颤波病程比较具有明显差异(P<0.01),有巨大F波的病程与未出现巨大F波病程比较无明显差异(P>0.05);上肢正中神经巨大F波出现与束颤波的出现无关联(P>0.05),下肢胫后神经巨大F波出现与束颤波的出现比较具有相关性(P=0.05)。结论:以上肢为主的F波出现率异常、以下肢为主的巨大F波和束颤波的出现可作为ALS电生理诊断阳性指标。有束颤波或巨大F波时可考虑疾病相对较早,且有较好的神经再支配及代偿,进展相对较慢。  相似文献   

15.
Effects of adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) were studied in transgenic (Tg) mice model for amyotrophic lateral sclerosis (ALS). Adenoviral vector containing GDNF gene (Ad-GDNF), E. coli lacZ (Ad-LacZ), or vehicle was injected once a week from 35 weeks of age into the right gastrocnemius muscle of Tg mice carrying mutant human Cu/Zn superoxide dismutase (SOD1) gene, and histological analysis was performed at 46 W. Clinical data showed a tendency of improvement, but was not significantly different among the three animal groups. In contrast, total number of and phospho-Akt (p-Akt) positive large motor neurons in the treated side was significantly preserved in Ad-GDNF-treated group than in vehicle- and Ad-LacZ-treated groups (*p < 0.05). Immunoreactivity of phospho-ERK (p-ERK) and active caspases-3 and -9 showed no difference. These results indicate that the Ad-GDNF treatment prevented motor neuron loss with preserving survival p-Akt signal and without affecting caspase activations, suggesting a future possibility for the therapy of the disease.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the “copper chaperone for SOD1.” Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.  相似文献   

17.
18.
Niu YF  Xiong HL  Wu JJ  Chen Y  Qiao K  Wu ZY 《遗传》2011,33(7):720-724
应用PCR技术结合DNA直接测序方法对8例临床确诊为家族性肌萎缩侧索硬化(Familiar amyotrophic lateral sclerosis,FALS)家系的先证者进行铜锌超氧化物歧化酶基因(SOD1)的突变筛查,在3例先证者中检出2种SOD1基因突变,其中,2例携带了位于4号外显子的错义突变Cys111Tyr(c.332G>A),另1例携带了位于5号外显子的错义突变Gly147Asp(c.440G>A),这2种突变在中国ALS患者中属首次报道。该结果扩大了中国FALS患者的SOD1基因突变谱,对研究中国FALS患者SOD1基因突变特点和分布规律有一定帮助。分析携带这2个突变患者的临床特点,提示Cys111Tyr突变导致的临床表型相对温和,而Gly147Asp突变可导致病情进展较快。该结果有待在更多的病例中进行证实。  相似文献   

19.
目的比较目前常用的5种行为学检测方法在家族性肌萎缩侧索硬化鼠模型研究中的作用。方法分为模型组(SOD1-G93A转基因鼠)和阴性对照组(同窝阴性对照)。使用5种行为学评价方法(一般状况评分、体重测定、转棒试验、抓力测定和步长分析)评价其行为学变化。结果 (1)一般状况评分:在第89天,模型组的一般状况评分开始下降。在第101天时,与对照组相比开始有统计学差异(P=0.000)。(2)体重测定:15周(第105天)时,模型组的体重开始下降,且与阴性对照组相比(P=0.026),开始有统计学差异。(3)转棒试验:11周(第77天)时,模型组的转棒时间开始下降。第13周(第91天)时,与阴性对照组相比开始有统计学差异(P=0.047)。(4)抓力测定:10周(第70天)时,模型组的后肢抓力开始下降。第13周(第91天)时,与阴性对照组相比开始有统计学差异(P=0.000)。(5)步长分析:第14周(第98天)后模型组的步长开始变短。15周(第105天)时与阴性对照组相比开始有统计学意义(P=0.000)。结论抓力测定优于其他行为学检测方法。  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron degenerative disease for which the aetiology is still unknown. The kynurenine pathway (KP) is a major degradative pathway of tryptophan ultimately leading to the production of NAD(+) and is also one of the major regulatory mechanisms of the immune response. The KP is known to be involved in several neuroinflammatory disorders. Among the KP intermediates, quinolinic acid (QUIN) is a potent excitotoxin, while kynurenic acid and picolinic acid are both neuroprotectant. This study aimed to (i) characterize the components of the KP in NSC-34 cells (a rodent motor neuron cell line) and (ii) assess the effects of QUIN on the same cells. RT-PCR and immunocytochemistry were used to characterize the KP enzymes, and lactate dehydrogenase (LDH) test was used to assess the effect of QUIN in the absence and presence of NMDA receptor antagonists, kynurenines and 1-methyl tryptophan. Our data demonstrate that a functional KP is present in NSC-34 cells. LDH tests showed that (i) QUIN toxicity on NSC-34 cells increases with time and concentration; (ii) NMDA antagonists, 2-amino-5-phosphonopentanoic acid, MK-801 and memantine, can partially decrease QUIN toxicity; (iii) kynurenic acid can decrease LDH release in a linear manner, whereas picolinic acid does the same but non-linearly; and (iv) 1-methyl tryptophan is effective in decreasing QUIN release by the rodent microglial cell line BV-2 and thus protects NSC-34 from cell death. There is currently a lack of effective treatment for ALS and our in vitro results provide a novel therapeutic strategy for ALS patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号