共查询到20条相似文献,搜索用时 0 毫秒
1.
Qianru Li Jing Li Lei Sun Yun Sun Fei Zhao Pingping Liu Xin Peng Xiaoyan Xuan Yun Li Peng Wang Chen Tan Ying Du 《Bioscience reports》2021,41(10)
Inflammatory response mediated by immune cells is either directly or indirectly regulated by mesenchymal stromal cells (MSCs). Accumulating evidence suggests that thrombospondin-1 (TSP-1) is highly expressed in response to inflammation. In this work, we isolated and identified human thymic mesenchymal stromal cells (tMSCs) and detected the expression of TSP-1. We found that tMSCs expressed TSP-1 and Poly (I:C) or LPS treatment promoted the expression of TSP-1. Further, we isolated and identified exosomes originating from tMSCs (MEXs). Notably, exosomes derived from LPS-pretreated tMSCs (MEXsLPS) promoted the polarization of macrophages to M1-like phenotype and IL-6, TNF-α secretion as well as the pro-inflammatory differentiation of CD4+T cells into Th17 cells. Upon silencing the expression of TSP-1 in tMSCs, the pro-inflammatory effects of MEXsLPS were suppressed. Therefore, these findings uncovered TSP-1 as the principal factor in MEXsLPS pro-inflammatory regulation. 相似文献
2.
3.
Diogo S. Pinto Tabassum Ahsan Joana Serra Ana Fernandes-Platzgummer Joaquim M. S. Cabral Cláudia L. da Silva 《Journal of cellular physiology》2020,235(10):7224-7238
Mesenchymal stromal cells (MSCs) have been widely exploited for the treatment of several conditions due to their intrinsic regenerative and immunomodulatory properties. MSC have demonstrated to be particularly relevant for the treatment of ischemic diseases, where MSC-based therapies can stimulate angiogenesis and induce tissue regeneration. Regardless of the condition targeted, recent analyses of MSC-based clinical trials have demonstrated limited benefits indicating a need to improve the efficacy of this cell product. Preconditioning MSC ex vivo through microenvironment modulation was found to improve MSC survival rate and thus prolong their therapeutic effect. This workstudy aims at enhancing the in vitro angiogenic capacity of a potential MSC-based medicinal product by comparing different sources of MSC and culture conditions. MSC from three different sources (bone marrow [BM], adipose tissue [AT], and umbilical cord matrix [UCM]) were cultured with xenogeneic-/serum-free culture medium under static conditions and their angiogenic potential was studied. Results indicated a higher in vitro angiogenic capacity of UCM MSC, compared with cells derived from BM and AT. Physicochemical preconditioning of UCM MSC through a microcarrier-based culture platform and low oxygen concentration (2% O2, compared with atmospheric air) increased the in vitro angiogenic potential of the cultured cells. Envisaging the clinical manufacturing of an allogeneic, off-the-shelf MSC-based product, preconditioned UCM MSC maintain the angiogenic gene expression profile upon cryopreservation and delivery processes in the conditions of our study. These results are expected to contribute to the development of MSC-based therapies in the context of angiogenesis. 相似文献
4.
《Cytotherapy》2014,16(7):893-905
Background aimsCord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated.MethodsMSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ResultsWe were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ConclusionsOur results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering. 相似文献
5.
6.
Nadri S Soleimani M Kiani J Atashi A Izadpanah R 《Differentiation; research in biological diversity》2008,76(3):223-231
Abstract Identification of mesenchymal stem cells (MSCs) derived from alternative sources has provided an exciting prospect for intensive investigation. This work focused on characterizing a new source of MSCs from stromal cells from human eye conjunctiva. In this study, after conjunctiva biopsies and culture of stromal segment of this tissue, fibroblast-like (SH2+ , SH3+ , CD29+ , CD44+ , CD166+ , CD13+ ) human stromal cells, which can be differentiated toward the osteogenic, adipogenic, chondrogenic, and neurogenic lineages, were obtained. These cells expressed Oct-4, Nanog, Rex-1 genes, and some lineage-specific markers like cardiac actin and Keratin. Taken together, the results indicate that conjunctiva stromal-derived cells are a new source of multipotent MSCs and despite originating from an adult source, they express undifferentiated stem cell markers. 相似文献
7.
8.
9.
10.
11.
12.
BACKGROUND AIMS. Intravenously applied mesenchymal stromal cells (MSC) are under investigation for numerous clinical indications. However, their capacity to activate shear stress-dependent adhesion to endothelial ligands is incompletely characterized. METHODS. Parallel-plate flow chambers were used to induce firm adhesion of MSC to integrin ligand vascular cell adhesion molecule (VCAM)-1. Human MSC were stimulated by chemokine (C-C motif) ligand (CCL15)/macrophage inflammatory protein (MIP-5), CCL19/MIP-3β chemokine (C-X-C motif) ligand (CXCL8)/interleukin (IL)-8, CXCL12/ stromal derived factor (SDF-1) or CXCL13/B lymphocyte chemoattractant (BLC). RESULTS. Two MSC isolates responded to three chemokines (either to CCL15, CCL19 and CXCL13, or to CCL19, CXCL12 and CXCL13), two isolates responded to two chemokines (to CCL15 and CCL19, or to CCL19 and CXCL13), and one isolate responded to CCL19 only. In contrast, all tested MSC isolates responded to selectins (P-selectin and E-selectin) or integrin ligand VCAM-1, as visualized by a velocity reduction under flow. CONCLUSIONS. Inter-individual variability of chemokine-induced integrin activation should be considered when evaluating human MSC as cellular therapies. 相似文献
13.
14.
15.
BACKGROUND: The multipotency of stromal cells has been studied extensively. It has been reported that mesenchymal stromal cells (MSC) are capable of differentiating into cells of multilineage. Different methods and reagents have been used to induce the differentiation of MSC. We investigated the efficacy of different growth factors in inducing MSC differentiation into neurons. METHODS: MSC from human BM were isolated and cultured in media supplemented with 10% FBS. These cells were identified and later induced to differentiate into neuron-like cells using different neurotrophic factors. Three different growth factors were used, either alone or in combination: brain-derived neurotrophic factor, epidermal growth factor and neural growth factor. RESULTS: After 10 days of culture, MSC showed neuron-like morphologic changes. Immunostaining showed that these cells expressed markers for neurons (growth-associated protein-43, neuron-specific nuclear protein and neurofilament 200 kDa) and expression of these markers suggested the transition of immature stages to more mature stages of neuron-like cells. DISCUSSION: Our results show that BM-derived MSC can differentiate not only into target cells of mesodermal origin but also neuron-like cells of ectodermal origin. The findings show that a combination of growth factors is more effective in inducing MSC into neuron-like cells. 相似文献
16.
The UC is a readily available source of blood that may be used for analysis and treatment. Some authors suggest that within the UC blood (UCB) are cells with potential for differentiation down mesenchymal lineages. Isolation and characterization of these cells has been accomplished in some centers. Differentiation of these cells down multiple lineages has been documented. Surface marker expression and gene expression profiling has been performed, and mesenchymal stromal cells (MSC) from BM and adipose tissue have been compared with those derived from UCB. The use of UCB-derived stem cells has been investigated in pre-clinical studies. As this field is rapidly advancing, this review summarizes the current state of our knowledge of MSC derived from UCB. 相似文献
17.
Anoop Babu Vasandan Shilpa Rani Shankar Priya Prasad Vulugundam Sowmya Jahnavi Ramesh Ramachandra Bhonde Susarla Jyothi Prasanna 《Journal of cellular and molecular medicine》2014,18(2):344-354
Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune‐modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue‐specific subsets, and lack of clear‐cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in‐depth evaluation of cellular characteristics of MSCs from proximal oro‐facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche‐specific influences on multipotency and immune‐modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell–associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno‐stimulatory/immune‐adhesive ligands like HLA‐DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro‐inflammatory cytokines. Both DPSCs and PDLSCs were hypo‐immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen‐induced lympho‐proliferative responses and priming with either IFNγ or TNFα enhanced immuno‐modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro‐inflammatory cytokines before translational usage. 相似文献
18.
The cell surface proteome of human mesenchymal stromal cells 总被引:1,自引:0,他引:1
Background
Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.Methodology/Principal Findings
To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.Conclusions/Significance
Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention. 相似文献19.
Multipotential mesenchymal stromal cells (MMSCs) are the subject of increasing scientific interest due to their key role in physiological renewal and repair. Allogeneic MMSCs interaction with other components of tissue environment, in particular with immune cells, represent one of the most intriguing question of modern cell physiology. MMSCs possess pronounced immunomodulatory capabilities based on their "immmunopriveledge" properties and the ability to suppress immune response. This review is highlighted the current state of art in the field of MMSCs immunomodulatory effects realization and mechanisms. MMSCs and immune cells interaction represents complex multidirectional process governed by both direct cell-to-cell interactions and soluble factors (interferon-gamma, tumor necrosis factor, prostaglandin E2, hepatocyte growth factor, interleukins ets.). The importance of physical environmental factors, primarily oxygen tension, on peculiarities of MMSCs and immune cells interaction is discussed. 相似文献
20.
Miranda-Sayago JM Fernández-Arcas N Benito C Reyes-Engel A Carrera J Alonso A 《Cytotherapy》2011,13(5):572-581
Background aimsHuman multipotent mesenchymal stromal cells (hMSC) have become one of the main interests in regenerative medicine because of their ability to differentiate into different lineages. Human amniotic fluid is reported to contain MSC (hAMSC) and therefore may be a useful source of cells for clinical applications. However, our understanding of the behavior of these cells in indefinite in vitro culture conditions is very limited.MethodsWe systematically evaluated and characterized, throughout their whole lifespan, the expansion potential, chromosomal stability, surface and intracellular phenotype and differentiation potential of fibroblastoid hAMSC (F-type hAMSC).ResultsNine F-type hAMSC cultures could be expanded in in vitro culture conditions for 223.25 ± 24.44 days (mean ± SD), during which time 28.96 ± 1.5 passages were made giving rise to 54.95 ± 3.17 population doublings (PD) and an estimated number of accumulated cells of between 1.0 × 1022 and 9.7 × 1023, with no visible alterations in the chromosome during their lifespan. All the cultures showed unchanged percentages of strongly positive expressions of the surface markers CD29, CD44, CD73, CD90, CD95, CD105 and HLA-ABC, as well as the embryonic intracellular markers Nanog and Sox2, during their lifespan, whereas the expression of the embryonic surface markers SSEA3, SSEA4, TRA-1-60 and TRA-1-81 fell until it disappeared with progression of the culture. These cells retained their differentiation capacities to adipogenic, chondrogenic and osteogenic lineages throughout their lifespan.ConclusionsF-type hAMSC exhibit reproducible biologic characteristics, confirming that these cells are ideal candidates for use in regenerative medicine. 相似文献