首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background aimsRegulatory agencies in the European Union (EU) and in the United States of America (USA) have adapted and launched regulatory pathways to accelerate patient access to innovative therapies, such as advanced therapy medicinal products (ATMPs). The aim of this study is to analyze similarities and differences between regulatory pathways followed by the approved ATMPs in both regions.MethodsA retrospective analysis of the ATMPs approved by EU and US regulatory agencies was carried out until May 31, 2020. Data were collected on the features and timing of orphan drug designation (ODD), scientific advice (SA), expedited program designation (EP), marketing authorization application (MAA) and marketing authorization (MA) for both regions.ResultsIn the EU, a total of fifteen ATMPs were approved (eight gene therapies, three somatic cell therapies, three tissue-engineered products and one combined ATMP), whereas in the USA, a total of nine were approved (five gene therapies and four cell therapies); seven of these were authorized in both regions. No statistical differences were found in the mean time between having the ODD or EP granted and the start of the pivotal clinical trial or MAA in the EU and USA, although the USA required less time for MAA assessment than the EU (mean difference, 5.44, P = 0.012). The MAA assessment was shorter for those products with a PRIME or breakthrough designation.. No differences were found in the percentage of ATMPs with expedited MAA assessment between the EU and the USA (33.3% versus 55.5%, respectively, P = 0.285) or in the time required for the MAA expedited review (mean difference 4.41, P = 0.105). Approximately half of the products in both regions required an Advisory Committee during the MAA review, and 60% required an oral explanation in the EU. More than half of the approved ATMPs (67% and 55.55% in the EU and the USA, respectively) were granted an ODD, 70% by submitting preliminary clinical data in the EU. The mean number of SA and protocol assistance per product conducted by the European Medicines Agency was 1.71 and 3.75, respectively, and only 13% included parallel advice with health technology assessment bodies. A total of 53.33% of the products conducted the first SA after the pivotal clinical study had started, reporting more protocol amendments. Finally, of the seven ATMPs authorized in both regions, the type of MA differed for only two ATMPs (28.6%), and four out of eight products non-commercialized in the USA had a non-standard MA in the EU.ConclusionsThe current approved ATMPs mainly target orphan diseases. Although EU and US regulatory procedures may differ, the main regulatory milestones reached by the approved ATMPs are similar in both regions, with the exception of the time for MAA evaluation, the number of authorized products in the regions and the type of authorization for some products. More global regulatory convergence might further simplify and expedite current ATMP development in these regions.  相似文献   

2.
《Cytotherapy》2022,24(7):686-690
Hospital exemption (HE) is a regulated pathway that allows the use of advanced therapy medicinal products (ATMPs) within the European Union (EU) under restrictive conditions overseen by national medicine agencies. In some EU countries, HE is granted for ATMPs with no demonstrated safety and efficacy; therefore, they are equivalent to investigational drugs. In other countries, HE is granted for ATMPs with demonstrated quality, safety and efficacy and for which centralized marketing authorization has not been requested. The Committee on the Ethics of Cell and Gene Therapy of the International Society for Cell & Gene Therapy reflects here on the ethical issues concerning HE application from the perspective of the patient, including risk–benefit balance, accessibility and transparency, while providing evidence that HE must not be regarded as a conduit for unproven and unethical ATMP-based interventions. Indeed, HE represents a legal instrument under which a patient's need for access to novel ATMPs is reconciled with ethics. Moreover, for some unmet medical needs, HE is the only pathway for accessing innovative ATMPs. Nonetheless, HE harmonization across EU Member States and limitations of ATMP use under the HE rule when similar products have already been granted centralized marketing authorization to avoid a parallel regulatory pathway are controversial issues whose political and economic consequences are beyond the scope of this review. Finally, the institution of an EU registry of HE applications and outcomes represents a priority to improve transparency, reduce patient risks, increase efficiency of health systems, facilitate company awareness of business opportunities and boost progressive entry of ATMPs into the therapeutic repertoire of health systems.  相似文献   

3.
《Cytotherapy》2020,22(10):592-600
Background aimsAs part of the advanced therapy medicinal product (ATMP) regulation, the hospital exemption (HE) was enacted to accommodate manufacturing of custom-made ATMPs for treatment purposes in the European Union (EU). However, how the HE pathway has been used in practice is largely unknown.MethodsUsing a survey and interviews, we provide the product characteristics, scale and motivation for ATMP manufacturing under HE and other, non-ATMP-specific exemption pathways in seven European countries.ResultsResults show that ATMPs were manufactured under HE by public facilities located in Finland, Germany, Italy and the Netherlands, which enabled availability of a modest number of ATMPs (n = 12) between 2009 and 2017. These ATMPs were shown to have close proximity to clinical practice, and manufacturing was primarily motivated by clinical needs and clinical experience. Public facilities used HE when patients could not obtain treatment in ongoing or future trials. Regulatory aspects motivated (Finland, Italy, the Netherlands) or limited (Belgium, Germany) HE utilization, whereas financial resources generally limited HE utilization by public facilities. Public facilities manufactured other ATMPs (n = 11) under named patient use (NPU) between 2015 and 2017 and used NPU in a similar fashion as HE. The scale of manufacturing under HE over 9 years was shown to be rather limited in comparison to manufacturing under NPU over 3 years. In Germany, ATMPs were mainly manufactured by facilities of private companies under HE.ConclusionsThe HE enables availability of ATMPs with close proximity to clinical practice. Yet in some countries, HE provisions limit utilization, whereas commercial developments could be undermined by private HE licenses in Germany. Transparency through a public EU-wide registry and guidance for distinguishing between ATMPs that are or are not commercially viable as well as public-private engagements are needed to optimize the use of the HE pathway and regulatory pathways for commercial development in a complementary fashion.  相似文献   

4.
《Cytotherapy》2014,16(3):289-297
Background aimsAdvanced therapy medicinal products (ATMP) are gene therapy, somatic cell therapy or tissue-engineered products regulated under (EC) No. 1394/2007 to ensure their free movement within the European Union while guaranteeing the highest level of health protection for patients. Academic good manufacturing practice (GMP) centers are major contributors in the development of ATMPs and this study assessed the impact of regulations on them.MethodsEuropean academic and non-industrial facilities (n = 747) were contacted, and a representative sample of 50 replied to a detailed questionnaire. Experienced centres were further selected in every Member State (MS) for semi-structured interviews. Indicators of ATMP production and development success were statistically assessed, and opinions about directive implementation were documented.ResultsFacilities experienced in manufacturing cell therapy transplant products are the most successful in developing ATMPs. New centres lacking this background struggle to enter the field, and there remains a shortage of facilities in academia participating in translational research. This is compounded by heterogeneous implementation of the regulations across MS.ConclusionsGMP facilities successfully developing ATMPs are present in all MS. However, the implementation of regulations is heterogeneous between MS, with substantial differences in the definition of ATMPs and in the approved manufacturing environment. The cost of GMP compliance is underestimated by research funding bodies. This is detrimental to development of new ATMPs and commercialization of any that are successful in early clinical trials. Academic GMP practitioners should strengthen their political visibility and contribute to the development of functional and effective European Union legislation in this field.  相似文献   

5.
ObjectiveTo review existing regulations and policies utilised by countries to enable patient access to orphan drugs.MethodsA review of the literature (1998 to 2014) was performed to identify relevant, peer-reviewed articles. Using content analysis, we synthesised regulations and policies for access to orphan drugs by type and by country.ResultsFifty seven articles and 35 countries were included in this review. Six broad categories of regulation and policy instruments were identified: national orphan drug policies, orphan drug designation, marketing authorization, incentives, marketing exclusivity, and pricing and reimbursement. The availability of orphan drugs depends on individual country’s legislation and regulations including national orphan drug policies, orphan drug designation, marketing authorization, marketing exclusivity and incentives such as tax credits to ensure research, development and marketing. The majority of countries (27/35) had in place orphan drug legislation. Access to orphan drugs depends on individual country’s pricing and reimbursement policies, which varied widely between countries. High prices and insufficient evidence often limit orphan drugs from meeting the traditional health technology assessment criteria, especially cost-effectiveness, which may influence access.ConclusionsOverall many countries have implemented a combination of legislations, regulations and policies for orphan drugs in the last two decades. While these may enable the availability and access to orphan drugs, there are critical differences between countries in terms of range and types of legislations, regulations and policies implemented. Importantly, China and India, two of the largest countries by population size, both lack national legislation for orphan medicines and rare diseases, which could have substantial negative impacts on their patient populations with rare diseases.  相似文献   

6.
7.
Background: Biological sex differences and sociocultural gender norms affect the provision of health care products and services, but there has been little explicit analysis of the impact of sex differences and gender norms on the regulation of pharmaceutical development and marketing.Objectives: This article provides an overview of the regulation of pharmaceuticals and examines the ways that regulatory agencies account for sex and gender in their review of scientific data and marketing materials.Methods: The primary focus is on the US context, but information is also included about regulatory models in Europe, Canada, and Japan for comparative purposes. Specific examples show how sex differences and gender norms influence scientific and policy decisions about pharmaceuticals.Results: The United States and Canada were found to be the only countries that have explicit requirements to include women in clinical trials and to perform sex-based subgroup analysis on study results. The potential influence of politics on regulatory decisions may have led to an uneven application of standards, as seen through the examples of mifepristone (for abortion) and sildenafil citrate (for erectile dysfunction). Three detailed case studies illustrate the importance of considering sex and gender in pharmaceutical development and marketing: Phase I clinical trials; human papillomavirus quadrivalent vaccine; and tegaserod, a drug for irritable bowel syndrome.Conclusions: Sex and gender play important roles in pharmaceutical regulation, from the design of clinical trials and the approval of new drugs to advertising and postmarketing surveillance. However, regulatory agencies pay insufficient attention to both biological sex differences and sociocultural gender norms. This disregard perpetuates inequalities by ignoring drug safety problems that predominate in women and by allowing misleading drug marketing that reinforces gender stereotypes. Recommendations have been made to improve the regulation of pharmaceuticals in regard to sex and gender.  相似文献   

8.
BackgroundClinical researches of stem cell‐based therapies are highly active in China, while it was arduous to determine the most effective way of clinical translation of those advanced therapies.MethodsThis article briefly introduced the regulatory framework development, the progress in stem cell clinical researches and clinical trials of commercially developed stem cell‐based products, as well as the clinical review concerns of stem cell‐based products in China.Main findingsThe current regulatory framework of stem cell clinical researches in China was launched in 2015, when regulatory authorities issued “Administrative Measures on Stem Cell Clinical Research” (AMSCCR) detailing the rules of stem cell clinical research. Thereafter, the rapidly growing stem cell clinical researches were rigorously managed and clinical use of stem cell therapy was halted. Meanwhile, commercially developed stem cell‐based products are supervised by Drug Administration Law (DAL).ConclusionThe regulatory framework of stem cell‐based therapy in China has progressed in the last few decades, which is currently regulated according to AMSCCR and DAL. Well‐designed and patient‐focused clinical trial is required for commercially developed stem cell‐based products, and definite clinical benefit evidence is crucial to obtain marketing authorization.

This article briefly introduced the regulatory framework development of stem cell‐based therapy, progress in stem cell‐based clinical studies and clinical review concerns in China.  相似文献   

9.
《Cytotherapy》2022,24(8):861-868
Activities involved in the production of certain advanced therapy medicinal products (ATMPs) require standardized approaches to mononuclear cell procurement to ensure the highest product quality, safety and process efficiency. These aims must be achieved while meeting regulatory and accreditation requirements for the procurement of mononuclear cells as starting materials. Mononuclear cells constitute the starting materials for many ATMPs, and this article sets out recommendations for procurement by clinical apheresis, addressing the variation among existing working practices and different manufacturers’ requirements that currently poses a challenge when managing multiple different protocols.  相似文献   

10.
《Cytotherapy》2020,22(12):792-801
Background aimsAccording to European Directive 2001/83/EC, chimeric antigen receptor T (CAR T) cells belong to a new class of medicines referred to as advanced therapy medicinal products (ATMPs). The specific features and complexity of these products require a total reorganization of the hospital circuit, from cell collection from the patient to administration of the final medicinal product. In France, at the cell stage, products are under the responsibility of a cell therapy unit (CTU) that controls, manipulates (if necessary) and ships cells to the manufacturing site. However, the final product is a medicinal product, and as with any other medicine, ATMPs have to be received, stored and further reconstituted for final distribution under the responsibility of the hospital pharmacy. The aim of our work was to perform a risk analysis of this circuit according to International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Q9 guidelines on quality risk management.MethodsWe evaluated the activities carried out by the Saint-Louis Hospital CTU and pharmacy. Process mapping was established to trace all the steps of the circuit and to identify potential risks or failures. The risk analysis was performed according to failure mode, effects and criticality analysis. The criticality of each risk (minor [Mi], moderate [Mo], significant [S] or major [Ma]) was scored, and corrective actions or preventive actions (CAPAs) for Mo, S and Ma risks were proposed.ResultsWe identified five Mo, six S and no Ma risks for the CTU part of the process. The most frequent risk was traceability failure. To reduce its frequency, we developed and validated software dedicated to ATMP activities. Another S risk was non-compliance of CAR T cell-specific steps due to the significant variability between companies. Our CAPA process was to implement procedures and design information sheets specific to each CAR T-cell program. In addition, critical steps were added to the ATMP software. Our CAPA process allowed us to reduce the criticality of identified risks to one Mi, seven Mo and three S. For the pharmacy part of the process, five Mo, two S and one Ma risk were identified. The most critical risk was compromised integrity of the CAR T-cell bag at the time of thawing. In case of unavailability of a backup bag, we designed and validated a degraded mode of operation allowing product recovery. In this exceptional circumstance, an agreement has to be signed between the physician, pharmacy, CTU and sponsor or marketing authorization holder. The implemented CAPA process allowed us to reduce the criticality of risks to three Mi and five Mo.ConclusionsOur risk analysis identified several Mo and S risks but only one Ma risk. The implementation of the CAPA process allowed for controlling some risks by decreasing their frequency and/or criticality or by increasing their detectability. The close collaboration between the CTU and pharmacy allows complete traceability of the CAR T-cell circuit, which is essential to guarantee safe use.  相似文献   

11.
《Cytotherapy》2022,24(5):544-556
Background aimsAdvanced therapy medicinal products (ATMPs) are novel drugs based on genes, cells or tissues developed to treat many different diseases. Stability studies of each new ATMP need to be performed to define its shelf life and guarantee efficacy and safety upon infusion, and these are presently based on guidelines originally drafted for standard pharmaceutical drugs, which have properties and are stored in conditions quite different from cell products. The aim of this report is to provide evidence-based information for stability studies on ATMPs that will facilitate the interlaboratory harmonization of practices in this area.MethodsWe have collected and analyzed the results of stability studies on 19 different cell-based experimental ATMPs, produced by five authorized cell factories forming the Lombardy “Plagencell network” for use in 36 approved phase I/II clinical trials; most were cryopreserved and stored in liquid nitrogen vapors for 1 to 13 years.ResultsThe cell attributes collected in stability studies included cell viability, immunophenotype and potency assays, in particular immunosuppression, cytotoxicity, cytokine release and proliferation/differentiation capacity. Microbiological attributes including sterility, endotoxin levels and mycoplasma contamination were also analyzed. All drug products (DPs), cryopreserved in various excipients containing 10% DMSO and in different primary containers, were very stable long term at <–150°C and did not show any tendency for diminished viability or efficacy for up to 13.5 years.ConclusionsOur data indicate that new guidelines for stability studies, specific for ATMPs and based on risk analyses, should be drafted to harmonize practices, significantly reduce the costs of stability studies without diminishing safety. Some specific suggestions are presented in the discussion.  相似文献   

12.
13.
BackgroundDozens of commercial RT-qPCR kits for SARS-CoV-2 detection are available with or without Emergency Use Authorization (EUA) by FDA or other regulatory agencies.ObjectiveWe evaluated the clinical performance of two SARS-CoV-2 RT-PCR kits designed and produced in South America, "COVID-19 RT-PCR Real TM FAST (CY5)" (ATGen, Uruguay) and "ECUGEN SARS-CoV-2 RT-qPCR" (UDLA-STARNEWCORP, Ecuador), for RT-qPCR SARS-CoV2 detection using "TaqMan 2019-nCoV Assay Kit v1" (Thermofisher, USA) as a gold standard technique.ResultsWe report a great clinical performance and analytical sensitivity for the two South American kits with sensitivity values of 96.4 and 100%, specificity of 100% and limit of detection in the range of 10 copies/uL of RNA extraction.Conclusions"COVID-19 RT-PCR Real TM FAST (CY5)" and "ECUGEN SARS-CoV-2 RT-qPCR" kits are reliable SARS-CoV-2 tests made in South America that have been extensively used in Uruguay, Argentina, Brazil, Bolivia and Ecuador. These locally produced SARS-CoV-2 tests have contributed to overcome supply shortages and reduce diagnosis cost, while maintaining the high quality standards of FDA EUA commercially available kits. This approach could be extended for other diagnostic products to improve infectious diseases surveillance at middle and low income countries beyond COVID-19 pandemic.  相似文献   

14.
《Cytotherapy》2021,23(10):874-885
Background aimsCell-based regenerative medicine is an innovative field that can potentially alter the overall survival and quality of life of patients with devastating diseases. Several cell therapy products (CTPs) have been approved within the last two decades, and more are under development. The establishment of an effective developmental strategy in accordance with the regulatory bodies of each country/region is crucial for fast delivery of each respective CTP. In particular, facilitating investigational new drug (IND) approval is important for accelerating the transition from non-clinical to clinical research/trial phases.MethodsHere the authors compared the non-clinical prerequisites for initiating clinical studies in five Asian countries/regions (India, China, Korea, Taiwan and Japan) from an industry viewpoint. The authors first identified the differences and tried to clarify the perspectives/considerations underpinning the different requirements.ResultsThe authors’ findings revealed that differences in regulations and development experiences, especially with CTPs, have led to clear differences in the non-clinical study package and its corresponding study design.ConclusionsBy sharing experiences of the research and development of CTPs among Asian countries/regions and including not only industry but also regulatory authorities, we will be able to expedite cross-border IND approval and eventually contribute to the early delivery of innovative CTPs to many Asian patients.  相似文献   

15.
The Next Generation and Biosimilar Monoclonal Antibodies: Essential Considerations Towards Regulatory Acceptance in Europe workshop, organized by the European Centre of Regulatory Affairs Freiburg (EUCRAF), was held February 3–4, 2011 in Freiburg, Germany. The workshop attracted over 100 attendees from 15 countries, including regulators from 11 agencies, who interacted over the course of two days. The speakers presented their authoritative views on monoclonal antibodies (mAbs) as attractive targets for development, the experience to date with the regulatory process for biosimilar medicinal products, the European Medicines Agency draft guideline on biosimilar mAbs, as well as key elements in the development of mAbs. Participants engaged in many lively discussions, and much speculation on the nature of the quality, non-clinical and clinical requirements for authorization of biosimilar mAbs.Key words: biosimilar, monoclonal antibody, European Medicines Agency, medicinal product regulation  相似文献   

16.
With the aging population in Europe it is anticipated that the growing demand for blood products will not be met by the estimated supply. Therefore up-to-date recommendations for optimal administration of blood products in hemotherapy are needed. Ten years after the first meeting on optimal use of blood products at Wildbad Kreuth, Germany, a second symposium was organized to convene leading experts from the clinical, regulatory and economic perspective. The aim was to re-evaluate the existing state of hemotherapy, identify areas where further studies are needed, and to provide up-dated recommendations. A preparatory survey by questionnaire concerning guidelines, quality management in clinical use of blood products, provision of products in the individual countries and re-evaluation of the 1999 Wildbad Kreuth recommendations was completed in advance. The second Kreuth Meeting in April 2009 was attended by 110 experts in transfusion medicine, regulators and regulatory authorities from 38 countries. By consensus, 20 new recommendations were adopted. Most of the 1999 recommendations were found to still be valid 10 years later. But their realization and implementation on the levels of clinical practice, regulatory authorities and health policy decision makers is still lagging behind leaving an important task to accomplish. The Kreuth initiative toward optimal use of blood products should continue.  相似文献   

17.
《Cytotherapy》2021,23(8):683-693
Background aimsBioartificial liver devices (BALs) are categorized as advanced therapy medicinal products (ATMPs) with the potential to provide temporary liver support for liver failure patients. However, to meet commercial demands, next-generation BAL manufacturing processes need to be designed that are scalable and financially feasible. The authors describe the development and application of a process economics decisional tool to determine the cost of goods (COG) of alternative BAL process flowsheets across a range of industrial scales.MethodsThe decisional tool comprised an information database linked to a process economics engine, with equipment sizing, resource consumption, capital investment and COG calculations for the whole bioprocess, from cell expansion and encapsulation to fluidized bed bioreactor (FBB) culture to cryopreservation and cryorecovery. Four different flowsheet configurations were evaluated across demands, with cell factories or microcarriers in suspension culture for the cell expansion step and single-use or stainless steel technology for the FBB culture step.ResultsThe tool outputs demonstrated that the lowest COG was achieved with microcarriers and stainless steel technology independent of the annual demand (1500–30 000 BALs/year). The analysis identified the key cost drivers were parameters impacting the medium volume and cost.ConclusionsThe tool outputs can be used to identify cost-effective and scalable bioprocesses early in the development process and minimize the risk of failing to meet commercial demands due to technology choices. The tool predictions serve as a useful benchmark for manufacturing ATMPs.  相似文献   

18.
19.
目的 为完善公立医院药品集中采购机制提供参考。方法 通过文献分析法和对比分析法总结并分析国内外公立医院药品集中采购模式和基药采购模式特点。结果 国内外不同的药品采购模式在采购目录、采购机构、采购方式、评标方式等方面都存在差异。结论 公立医院药品集中采购办法尚不完善,通过借鉴国际和基本药物采购经验,不断完善机构建设能力,发挥批量优势、实现招采合一,提高市场集中度、建立现代化物流系统等。  相似文献   

20.
Many patents for the first biologicals derived from recombinant technology and, more recently, monoclonal antibodies (mAbs) are expiring. Naturally, biosimilars are becoming an increasingly important area of interest for the pharmaceutical industry worldwide, not only for emergent countries that need to import biologic products. This review shows the evolution of biosimilar development regarding regulatory, manufacturing bioprocess, comparability, and marketing. The regulatory landscape is evolving globally, whereas analytical structure and functional analyses provide the foundation of a biosimilar development program. The challenges to develop and demonstrate biosimilarity should overcome the inherent differences in the bioprocess manufacturing and physicochemical and biological characterization of a biosimilar compared to several lots of the reference product. The implementation of approaches, such as Quality by Design (QbD), will provide products with defined specifications in relation to quality, purity, safety, and efficacy that were not possible when the reference product was developed. Actually, the need to prove comparability to the reference product by the biosimilar industry has increased the knowledge about the product and the production‐process associated by the use of powerful analytical tools. The technological challenges to make copies of biologic products while attending regulatory and market demands are expected to help innovation in the direction of attaining more productive manufacturing processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1139–1149, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号