首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet Al (UVA1) radiation generates reactive oxygen species and the oxidative stress is known as a mediator of DNA damage and of apoptosis. We exposed cultured human cutaneous fibroblasts to UVA1 radiation (wavelengths in the 340–450-nm range with emission peak at 365 nm) and, using the alkaline unwinding method, we showed an immediate significant increase of DNA strand breaks in exposed cells. Apoptosis was determined by detecting cytoplasmic nucleosomes (enzyme-linked immunosorbent assay method) at different time points in fibroblasts exposed to different irradiation doses. In our conditions, UVA1 radiation induced an early (8 h) and a delayed (18 h) apoptosis. Delayed apoptosis increased in a UVA dosedependent manner. Zinc is an important metal for DNA protection and has been shown to have inhibitory effects on apoptosis. The addition of zinc (6.5 mg/L) as zinc chloride to the culture medium significantly decreased immediate DNA strand breaks in human skin fibroblasts. Moreover, zinc chloride significantly decreased UVA1-induced early and delayed apoptosis. Thus, these data show for the first time in normal cutaneous cultured cells that UVA1 radiation induces apoptosis. This apoptosis is biphasic and appears higher 18 h after the stress. Zinc supplementation can prevent both immediate DNA strand breakage and early and delayed apoptosis, suggesting that this metal could be of interest for skin cell protection against UVA1 irradiation.  相似文献   

2.
Previous studies have demonstrated that phenolic compounds, including genistein (4',5,7-trihydroxyisoflavone) and resveratrol (3,4',5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in phi X-174 plasmid DNA. H(2)O(2)/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H(2)O(2)/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H(2)O(2) suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H(2)O(2)/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H(2)O(2) were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

3.
He W  He P  Wang A  Xia T  Xu B  Chen X 《Mutation research》2008,649(1-2):62-70
Polybrominated diphenyl ethers (PBDEs) are an important class of flame retardants. Because of their detection in human breast milk and structural similarity to polychlorinated biphenyls (PCBs), concern has been raised about their potential toxicity, particularly neurotoxic effects in newborns and children. The aim of the current study was to evaluate the cytotoxic and genotoxic effects of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) in human neuroblastoma (SH-SY5Y) cells in vitro. SH-SY5Y cells were incubated with different concentrations of PBDE-47 (1, 2, 4, 8 microg/ml) for 24 h, and a set of bioassays were conducted to measure: cell viability, cell proliferation (nuclear division index, NDI), lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) formation, cell apoptosis, and DNA breakage and cytogenetic damage. The data showed that PBDE-47 inhibited cell viability, increased LDH leakage, and induced cell apoptosis. All significant effects were observed at concentrations of 4 microg/ml and above (P<0.05). After 24 h exposure, a concentration-dependent increase in ROS formation was observed, and there were obviously increase in comparison to the control at concentrations as low as 2 microg/ml PBDE-47. Log-transformed Olive Tail Moment (OTM) were significantly increased compared with the control at various PBDE-47 concentrations (P<0.05), while a significant increase in the percentage of DNA in the tail was only observed at 8 microg/ml PBDE-47 (P<0.05). PBDE-47 caused a concentration-dependent decrease in NDI, and concentration-dependent increases in chromosome abnormalities as measured by total Micronuclei (MNi)/1000 binucleate cells (BNCs), micronucleated binucleate cells (MNBNCs)/1000 BNCs, and nucleoplasmic bridges (NPBs)/1000 BNCs. The results indicate that PBDE-47 is cytotoxic and genotoxic in SH-SY5Y cells in vitro.  相似文献   

4.
During lung injury, fibroblasts migrate into the alveolar spaces where they can be exposed to pulmonary surfactant. We examined the effects of Survanta and surfactant protein A (SP-A) on fibroblast growth and apoptosis and on type I collagen, collagenase-1, and tissue inhibitor of metalloproteinase (TIMP)-1 expression. Lung fibroblasts were treated with 100, 500, and 1,000 microg/ml of Survanta; 10, 50, and 100 microg/ml of SP-A; and 500 microg/ml of Survanta plus 50 microg/ml of SP-A. Growth rate was evaluated by a formazan-based chromogenic assay, apoptosis was evaluated by DNA end labeling and ELISA, and collagen, collagenase-1, and TIMP-1 were evaluated by Northern blotting. Survanta provoked fibroblast apoptosis, induced collagenase-1 expression, and decreased type I collagen affecting mRNA stability approximately 10-fold as assessed with the use of actinomycin D. Collagen synthesis and collagenase activity paralleled the gene expression results. SP-A increased collagen expression approximately 2-fold and had no effect on collagenase-1, TIMP-1, or growth rate. When fibroblasts were exposed to a combination of Survanta plus SP-A, the effects of Survanta were partially reversed. These findings suggest that surfactant lipids may protect against intraluminal fibrogenesis by inducing fibroblast apoptosis and decreasing collagen accumulation.  相似文献   

5.
Isoflavone genistein may have beneficial effects on vascular function, but the mechanism is unclear. Here, we investigated whether genistein protects vascular endothelial cells against apoptosis induced by tumor necrosis factor-α. We show that genistein significantly inhibited TNF-α-induced apoptosis in human aortic endothelial cells as determined by caspase-3 activation, 7-amino actinomycin D staining, in situ apoptotic cell detection and DNA laddering. The anti-apoptotic effect of genistein was associated with an enhanced expression of Bcl-2 protein and its promoter activity. Inhibition of extracellular signal-regulated kinase 1/2, protein kinase A, or estrogen receptors had no effect on the cytoprotective effect of genistein. However, inhibition of p38 mitogen-activated protein kinase (p38) completely abolished this genistein effect. Accordingly, stimulation of HAECs with genistein resulted in rapid activation of p38β, but not p38α. These findings provide the evidence that genistein acts as a survival factor for vascular ECs to protect cells against apoptosis via activation of p38β. Preservation of the functional integrity of the endothelial monolayer may represent an important mechanism by which genistein exerts its vasculoprotective effect.  相似文献   

6.
Previous studies have demonstrated that phenolic compounds, including genistein (4′,5,7-trihydroxyisoflavone) and resveratrol (3,4′,5-trihydroxystilbene), are able to protect against carcinogenesis in animal models. This study was undertaken to examine the ability of genistein and resveratrol to inhibit reactive oxygen species (ROS)-mediated strand breaks in φX-174 plasmid DNA. H2O2/Cu(II) and hydroquinone/Cu(II) were used to cause oxidative DNA strand breaks in the plasmid DNA. We demonstrated that the presence of genistein at micromolar concentrations resulted in a marked inhibition of DNA strand breaks induced by either H2O2/Cu(II) or hydroquinone/Cu(II). Genistein neither affected the Cu(II)/Cu(I) redox cycle nor reacted with H2O2 suggest that genistein may directly scavenge the ROS that participate in the induction of DNA strand breaks. In contrast to the inhibitory effects of genistein, the presence of resveratrol at similar concentrations led to increased DNA strand breaks induced by H2O2/Cu(II). Further studies showed that in the presence of Cu(II), resveratrol, but not genistein was able to cause DNA strand breaks. Moreover, both Cu(II)/Cu(I) redox cycle and H2O2 were shown to be critically involved in resveratrol/copper-mediated DNA strand breaks. The above results indicate that despite their similar in vivo anticarcinogenic effects, genistein and resveratrol appear to exert different effects on oxidative DNA damage in vitro.  相似文献   

7.
The analysis of DNA damage by mean of Comet or single cell gel electrophoresis (SCGE) assay has been commonly used to assess genotoxic impact in aquatic animals being able to detect exposure to low concentrations of contaminants in a wide range of species. The aims of this work were 1) to evaluate the usefulness of the Comet to detect DNA strand breakage in dolphin leukocytes, 2) to use the DNA diffusion assay to determine the amount of DNA strand breakage associated with apoptosis or necrosis, and 3) to determine the proportion of DNA strand breakage that was unrelated to apoptosis and necrosis. Significant intra-individual variation was observed in all of the estimates of DNA damage. DNA strand breakage was overestimated because a considerable amount (~29%) of the DNA damage was derived from apoptosis and necrosis. The remaining DNA damage in dolphin leukocytes was caused by factors unrelated to apoptosis and necrosis. These results indicate that the DNA diffusion assay is a complementary tool that can be used together with the Comet assay to assess DNA damage in bottlenose dolphins.  相似文献   

8.
Antrodia camphorata (AC) has been used as a health supplement in Asia to control different cancers; however, the cellular mechanisms of its effects are unclear. The effect of AC on cultured human prostate cancer cells (PC3) has not been explored. This study examined the effect of AC on viability, apoptosis, mitogen-activated protein kinases (MAPKs) phosphorylation and Ca2+ handling in PC3 cells. AC at concentrations of 5-50 microg/ml did not affect cell viability, but at 100-200 microg/ml decreased viability and induced apoptosis in a concentration-dependent manner. AC at concentrations of 25-200 microg/ml did not alter basal [Ca2+]i, but at a concentration of 25 microg/ml decreased the [Ca2+]i increases induced by ATP, bradykinin, histamine and thapsigargin. ATP, bradykinin and histamine increased cell viability whereas thapsigargin decreased it. AC (25 microg/ml) pretreatment inhibited ATP-, bradykinin-, and histamine-induced enhancement on viability, but reversed thapsigargin-induced cytotoxicity. Immunoblotting showed that AC (200 microg/ml) did not induce the phosphorylation of ERK, JNK, and p38 MAPKs. Collectively, in PC3 cells, AC exerted multiple effects on viability and [Ca2+]i, caused apoptosis via pathways unrelated to [Ca2+]i signal and phosphorylation of ERK, JNK and p38 MAPKs.  相似文献   

9.
Chang J  Hsu Y  Kuo P  Kuo Y  Chiang L  Lin C 《Life sciences》2005,76(16):1883-1893
Luteolin is a common constituent of many kinds of fruits and vegetables. It possesses the anti-neoplastic activities against several human cancers, but its activity against hepatocellular carcinoma (HCC) is seldom mentioned. To evaluate the activity against HCC and to provide information about the mechanism, we tested luteolin against five human hepatoma cell lines, namely HepG2, SK-Hep-1, PLC/PRF/5, Hep3B, and HA22T/VGH, with XTT assay and flow cytometry. The results showed that luteolin inhibited PLC/PRF/5, Hep3B and HA22T/VGH at a concentration of 1 microg/ml, but it needed 5 microg/ml to inhibit HepG2 and 10 microg/ml for SK-Hep1 (P <0.05). The inhibitive concentrations of 50% (IC50) of luteolin were between 7.29 microg/ml and 32.59 microg/ml, which were comparable with those of 5-FU (15.35 microg/ml to 32.84 microg/ml). The least effective cell line as affected by luteolin (SK-Hep1) was the most effective one when treating with 5-FU. The least effective cell line as affected by 5-FU (HA22T/VGH) was effectively affected by luteolin. It seemed that luteolin had some complementary activity to 5-FU against these HCC cell lines. The luteolin-treated PLC/PRF/5 cells exhibited typical changes of apoptosis with a characteristic DNA laddering pattern on gel electrophoresis. Luteolin also activated casepase-3, increased Bax protein with a concomitant decrease in Bcl-XL level. Increase in Bax/ Bcl-XL ratio and activation of caspase-3 supported the apoptotic finding on gel electrophoresis. Luteolin also induced cell cycle arrest at G0/G1 phase. We suggested that luteolin might exhibit anti-HCC activity as efficient as 5-FU by the mechanism of not only cell cycle arrest but also apoptosis.  相似文献   

10.
We studied estrogen effects on osteoclastic differentiation using RAW264.7, a murine monocytic cell line. Differentiation, in response to RANKL and colony-stimulating factor 1, was evaluated while varying estrogen receptor (ER) stimulation by estradiol or nonsteroidal ER agonists was performed. The RAW264.7 cells were found to express ERalpha but not ERbeta. In contrast to RANKL, which decreased ERalpha expression and induced osteoclast differentiation, 10 nm estradiol, 3 microm genistein, or 3 microm daidzein all increased ERalpha expression, stimulated cell proliferation, and decreased multinucleation, with the effects of estrogen > or = daidzein > genistein. However, no estrogen agonist reduced RANKL stimulation of osteoclast differentiation markers or its down-regulation of ERalpha expression by more than approximately 50%. Genistein is also an Src kinase antagonist in vitro, but it did not decrease Src phosphorylation in RAW264.7 cells relative to other estrogen agonists. However, both phytoestrogens and estrogen inhibited RANKL-induced IkappaB degradation and NF-kappaB nuclear localization with the same relative potency as seen in proliferation and differentiation assays. This study demonstrates, for the first time, the direct effects of estrogen on osteoclast precursor differentiation and shows that, in addition to effecting osteoblasts, estrogen may protect bone by reducing osteoclast production. Genistein, which activates ERs selectively, inhibited osteoclastogenesis less effectively than the nonselective phytoestrogen daidzein, which effectively reproduced effects of estrogen.  相似文献   

11.
Tumor necrosis factor alpha (TNFalpha) is associated with a higher risk of cardiovascular disease. Matrix metalloproteinase-2 (MMP-2) has been implicated in the pathophysiology of ischemic heart disease. However, the role of interactions between MMP-2 and TNFalpha, associated with cardiac apoptosis, is unknown. We hypothesized that MMP-2 will contribute to TNFalpha-induced myocardial apoptosis. After treatment with TNFalpha (1-20 ng/ml) for 24 h, or with TNFalpha (10 ng/ml) for 0, 6, 12, 24, or 48 h, MMP-2 activity, percent of TUNEL-positive myocytes, and DNA fragmentation dose, and time-dependently increased compared to control. However, TNFalpha blockade (neutralizing antibodies against human TNFalpha, 25 microg/ml) significantly reduced the activity of MMP-2 and markers of apoptosis induced by TNFalpha. Interestingly, MMP-2 antibody (30 microg/ml), or the MMP-2 inhibitors Doxycycline (Dox, 1-50 micromol/l) or GM6001 (GM, 10 micromol/l), prior to TNFalpha insult, decreased myocardial MMP-2 activity and reduced the percent of TUNEL-positive myocytes and DNA fragmentation. Moreover, MMP-2 inhibition reduced Bax expression and caspase3 activity, as well as increasing Bcl2 expression. MMP-2 inhibition was associated with decreased cardiac MMP-2 activity and decreased myocardial apoptosis induced by TNFalpha. These results suggest that MMP-2 contributes to TNFalpha-induced apoptosis in cultured rat cardiac myocytes.  相似文献   

12.
We investigated the genotoxicity of middle distillate jet fuel, Jet Propulsion 8 (JP-8), on H4IIE rat hepatoma cells in vitro. DNA damage was evaluated using the comet (single cell gel electrophoresis) assay. Cells were exposed for 4h to JP-8 (solubilized in ethanol (EtOH) at 0.1% (v/v)) to concentrations ranging from 1 to 20microg/ml. Exposure to JP-8 resulted in an overall increase in mean comet tail moments ranging from 0.74+/-0.065 (0.1% EtOH control) to 3.13+/-0.018,4.36+/-0.32,5.40+/-0.29,7.70+/-0.52 and 11.23+/-0.77 for JP-8 concentrations 3, 5, 10, 15 and 20microg/ml, respectively. Addition of DNA repair inhibitors hydroxyurea (HU) and cytosine arabinoside (Ara-C) to cell culture with JP-8 resulted in accumulation of DNA damage strand breaks and increase in comet tail length. Inclusion of 4mM HU and 40microM Ara-C with 3, 5, 10 and 20microg/ml JP-8 concentrations resulted in increased mean tail moments to 5.94+/-0.43,10.12+/-0.72,17.03+/-0.96,and29.25+/-1.55. JP-8, in the concentrations used in this study, did not result in cytotoxicity or significant apoptosis, as measured using the terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-X nick end labeling (TUNEL) assay. These results demonstrate that relevant exposures to JP-8 result in DNA damage to H4IIE cells, and suggest that DNA repair is involved in mitigating these effects.  相似文献   

13.
We evaluated the cytoprotective effects of americanin B, a lignan compound, against hydrogen peroxide (H2O2)-induced cell damage. Americanin B decreased the level of DPPH radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species. Americanin B also attenuated DNA damage induced by H2O2 treatment, as shown by the inhibition of formation of comet tails, indicative of DNA strand breakage, and prevented the oxidation of protein and peroxidation of lipid, as determined by protein carbonyls and 8-isoprostane. Furthermore, americanin B protected against H2O2-induced apoptotic cell death, as determined by a reduction in the numbers of apoptotic bodies stained with Hoechst 33342. These findings suggest that americanin B protects cells against oxidative damage by exerting antioxidant effects and inhibiting apoptosis.  相似文献   

14.
beta-Amyloid protein (Abeta), a major component of senile plaques of Alzheimer's disease (AD) brain, causes elevation of the intracellular free Ca2+ level and the production of robust free radicals, both of which contribute greatly to the AD-associated cascade including severe neuronal loss in the hippocampus. Genistein, the most active molecule of soy isoflavones, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the neuroprotective effect of genistein against Abeta25-35-induced apoptosis in cultured hippocampal neurons, as well as the underlying mechanism. Abeta25-35-induced apoptosis, characterized by decreased cell viability, neuronal DNA condensation, and fragmentation, is associated with an increase in intracellular free Ca2+ level, the accumulation of reactive oxygen species (ROS), and the activation of caspase-3. All these phenotypes induced by Abeta25-35 are reversed by genistein. Our results further show that at the nanomolar (100 nM) level, genistein protects neurons from Abeta25-35-induced damage largely via the estrogen receptor-mediated pathway, and at the micromolar (40 microM) level, the neuroprotective effect of genistein is mediated mainly by its antioxidative properties. Our data suggest that genistein attenuates neuronal apoptosis induced by Abeta25-35 via various mechanisms.  相似文献   

15.
Antioxidant species may act in vivo to decrease oxidative damage to DNA, protein and lipids thus reducing the risk of coronary heart disease and cancer. Phytoestrogens are plant compounds which are a major component of traditional Asian diets and which may be protective against certain hormone-dependent cancers (breast and prostate) and against coronary heart disease. They may also be able to function as antioxidants, scavenging potentially harmful free radicals. In this study, the effects of the isoflavonoids (a class of phytoestrogen) genistein and equol on hydrogen peroxide-mediated DNA damage in human lymphocytes were determined using alkaline single-cell gel electrophoresis (the comet assay). Treatment with hydrogen peroxide significantly increased the levels of DNA strand breaks. Pre-treatment of the cells with both genistein and equol offered protection against this damage at concentrations within the physiological range. This protection was greater than that offered by addition of the known antioxidant vitamins ascorbic acid and alpha-tocopherol, or the compounds 17beta-oestradiol and Tamoxifen which have similar structures to isoflavonoids and are known to have weak antioxidant properties. These findings are consistent with the hypothesis that phytoestrogens can, under certain conditions, function as antioxidants and protect against oxidatively-induced DNA damage.  相似文献   

16.
In this in vitro study, the hypothesis that the beneficial effects of dietary genistein on bone are through the modulation of the bone marker synthesis by osteoblastic MC3T3-E1 cells was tested, and the possible roles of estrogen receptors in the actions of genistein on osteoblastic cells were also examined. Interleukin-6 production was decreased 40% to 60% in osteoblastic cells treated with genistein from either day 8-16 or day 12-16, at dietarily achievable concentrations (10(-10) to 10(-8) M) (P<0.05). The mRNA expression of osteoprotegerin increased about 140% in cells treated from with genistein day 4-8 at a concentration of 10(-8) M (P<0.05). The ratio of estrogen receptor-alpha to beta expression increased 10-fold from day 0 to 12 of culture (P<0.05). Correlating with this time-dependent variation in estrogen receptor expression, treatments of 17beta-estradiol and genistein had opposite dose patterns on the ratio of estrogen receptor-alpha to beta expression following treatment from day 4 to 6 compared to from day 0 to 2. The addition of ICI-182,780, an estrogen receptor blocker, reduced the inhibitory effect of genistein on IL-6 production by 30-50%. In summary, these findings suggest that the beneficial skeletal effects of genistein, at dietarily achievable levels, appear to be mediated, at least in part, by interleukin-6 and osteoprotegerin, and estrogen receptors play important roles in the inhibition of interleukin-6 synthesis by genistein in osteoblastic MC3T3-E1 cells.  相似文献   

17.
Kang JH 《BMB reports》2010,43(10):683-687
Previous studies have shown that one of the primary causes of increased iron content in the brain may be the release of excess iron from intracellular iron storage molecules such as ferritin. Free iron generates ROS that cause oxidative cell damage. Carnosine and related compounds such as endogenous histidine dipetides have antioxidant activities. We have investigated the protective effects of carnosine and homocarnosine against oxidative damage of DNA induced by reaction of ferritin with H(2)O(2). The results show that carnosine and homocarnosine prevented ferritin/H(2)O(2)-mediated DNA strand breakage. These compounds effectively inhibited ferritin/H(2)O(2)-mediated hydroxyl radical generation and decreased the mutagenicity of DNA induced by the ferritin÷H(2)O(2) reaction. Our results suggest that carnosine and related compounds might have antioxidant effects on DNA under pathophysiological conditions leading to degenerative damage such as neurodegenerative disorders.  相似文献   

18.
19.
Avemar (MSC) is a nontoxic fermented wheat germ extract demonstrated to have antitumor effects. Avemar has the potential to significantly improve the survival rate in patients suffering from malignant colon tumors. We studied its effects in the HT-29 human colon carcinoma cell line. Avemar had an inhibiting effect on colonies of HT-29 cells with an IC50 value of 118 microg/ml (7 days of incubation); this value could be decreased to 100 and 75 microg/ml in the presence of vitamin C. In the cell line examined, Avemar induced both necrosis and apoptosis, as demonstrated by Hoechst/propidium iodide staining. The incubation of cells with 3200 microg/ml Avemar for 24 hrs caused necrosis in 28% and the induction of apoptosis in 22% of the cells. Avemar inhibited the cell-cycle progression of HT-29 cells in the G1 phase of the cell cycle. In addition, Avemar inhibited the activity of the key enzyme of de novo DNA synthesis, ribonucleotide reductase. In addition, we determined the effects of Avemar on the activity of cyclooxygenase-1 and -2. Both enzymes were significantly inhibited by Avemar with IC50 values of 100 and 300 microg/ml, respectively. We outline new explanations for its antitumor activity, which might serve as the basis for further studies using Avemar.  相似文献   

20.
Polyamines are ubiquitous polycations that participate in cellular processes such as growth, differentiation and cell death. Among the different functions ascribed to these organic cations, the polyamine spermine is known to protect DNA from the damage produced by reactive oxygen species (ROS) generated by different agents including copper ions. We have found that spermine exerts opposite effects on DNA strand breakage induced by Fenton reaction depending on metal concentration. Whereas at low concentration of the transition metals, 10 microM copper or 50 microM Fe(II), 1 mM spermine exerted a protective role, at metal concentrations higher than 25 microM copper or 100 microM Fe(II), spermine stimulated DNA strand breakage. The promotion of the damage induced by spermine was independent of DNA sequence but decreased by increasing the ionic concentration of the media or by the presence of metal-chelating agents. Moreover, spermine did not increase the oxidation of 2-deoxyribose by metal/H2O2 when DNA was substituted by 2-deoxyribose as a target for damage. Our results corroborate that spermine may protect DNA and 2-deoxyribose from the damage induced by ROS but also demonstrate that under certain conditions spermine may promote DNA strand breakage. The fact that this promoting effect of spermine on ROS-induced damage was observed only in the presence of DNA suggests that this polyamine under certain conditions may facilitate the interaction of copper and iron ions with DNA leading to the formation of ROS in close proximity to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号