首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
丁酸钠对CHO-EPO工程细胞株rhEPO表达量的影响   总被引:1,自引:0,他引:1  
以稳定整合有pEDEPO的CHOEPO工程细胞株为研究对象,在无血清条件下,系统观察了05、10、25和50mmol/L4个浓度的丁酸钠作用于该细胞株的情况,结果表明:丁酸钠对CHOEPO工程细胞的生长有明显的抑制作用;影响CHOEPO工程细胞EPO表达,浓度10mmol/L可提高EPO表达量25倍左右,并可持续较长的一段时间;延缓CHOEPO工程细胞在无血清培养时的细胞脱落;提高CHOEPO工程细胞EPOmRNA水平  相似文献   

2.
It was previously reported that silkworm hemolymph (SH) inhibits apoptosis and increases the production of recombinant human erythropoietin (EPO) in Chinese hamster ovary (CHO) cells. The apoptosis-inhibiting component in SH is a member of 30K protein family. In this study, the CHO cell line producing EPO was manipulated genetically to express the 30Kc6 gene encoding a 30K protein in the hemolymph of the silkworm, Bombyx mori. The transient expression of 30Kc6 significantly suppressed the cell death induced by serum deprivation. A stable cell line expressing 30Kc6 with an anti-apoptotic property was established. The stable expression of 30Kc6 inhibited serum-deprivation-induced apoptosis and increased the cell density and EPO titer by 5- and 10-fold, respectively. The positive effects of the 30Kc6 expression on cell viability and productivity were due to the stable maintenance of the mitochondrial activity. The 30Kc6 expression efficiently suppressed the depolarization of the mitochondrial membrane and subsequently balanced the generation/consumption of ATP. The use of the 30Kc6 gene is expected to provide a new method of host cell engineering for improving the productivity of the recombinant protein.  相似文献   

3.
Abstract

Several factors may affect erythropoietin (EPO) sugar structures including designing cell culture procedure, pH, concentration of additives, dissolved oxygen, and other physicochemical parameters. In this study, we investigated the influence of changes in effective parameters and compounds on the growth rate of Chinese hamster ovary cell (CHO) cells producing recombinant EPO. Cell culture was performed at different temperature, buffering conditions, and varied concentrations of additives such as pyruvic acid, insulin, GlutaMAX, and sodium butyrate. Results indicated that the optimal temperature and pH were 37?°C and 7.2, respectively. Also, optimal concentrations for pyruvic acid, butyrate, glutamate, and insulin were obtained to be 20?mM, 1?mM, 2?mM, and 40?μg/mL, respectively. Then, cell culture was performed in microcarrier-coated spinner flasks under the optimized condition. The results showed recombinant human EPO (rhEPO) production with adequate purity. Optimization of physicochemical conditions and culture media are important factors to improve the quantity and quality of protein products. This study showed that cell growth and recombinant EPO protein production significantly increased under the optimized conditions. The results of this research can also be used in scale-up to increase the efficiency of EPO production.

Abbreviations: EPO: erythropoietin; CHO cell: Chinese hamster ovary cell; rhEPO: recombinant human EPO; DMEM: modified eagle’s medium; FBS: fetal bovine serum; SDS-PAGE: sodium dodecyl sulfate–polyacrylamide gel electrophoresis; IGF-1: insulin-like growth factor 1  相似文献   

4.
组蛋白去乙酰化酶(HDACs)抑制剂丁酸钠调节细胞分化、增殖和抑制肿瘤发生。硫氧还蛋白相互作用蛋白( thioredoxin-interacting protein,TXNIP)通过负性调控硫氧还蛋白的活性,调控细胞内的氧化还原平衡,抑制细胞生长。本研究证明,丁酸钠可通过激活依赖于转录因子NF-Y的TXNIP 表达,诱导人非小细胞肺癌细胞A549死亡。MTT法显示,5 mmol/L丁酸钠处理A549 细胞72 h可显著诱导其死亡;流式细胞分析发现,其中大部分细胞以凋亡形式死亡。表达芯片分析表明,在丁酸钠处理的A549 细胞中,TXNIP 的mRNA 水平显著提高30~50倍;实时定量PCR、免疫细胞化学和蛋白质印迹结果进一步证明,丁酸钠可显著上调TXNIP 表达。荧光素酶报告基因分析证明,与对照细胞比较,丁酸钠刺激的细胞内报告酶活性可提高约10 倍,提示丁酸钠可激活TXNIP 启动子的转录活性。TXNIP 启动子删除突变分析显示,删除NF-Y 结合的DNA 序列显著降低丁酸钠对TXNIP 启动子的激活能力, 表明NF-Y转录因子参与丁酸钠介导的TXNIP基因转录激活。为分析TXNIP 在A549 细胞中的定位和部分功能,在A549细胞 中过表达GFP TXNIP 融合蛋白及其截短突变体融合蛋白;结果显示,野生型和保留N 端1-281aa的截短突变体定位在细胞核,而删除N 端1-200aa 时,其定位在细胞核和细胞质,提示N 端1 200aa 可调节该蛋白质的定位。然而,丁酸钠刺激未发现表达的GFP TXNIP在细胞内定位改变。以上结果表明,丁酸钠可通过激活转录因子NF YC 依赖的TXNIP激活,诱导A549 细胞死亡,但不能改变TXNIP蛋白在细胞内的定位。上述结果还提示,TXNIP 的N 端1-200aa 可能在调节TXNIP 的细胞定位中发挥作用。是否丁酸钠刺激TXNIP表达导致的细胞死亡系通过改变细胞氧化压力,以及TXNIP在细胞中定位的详尽调节机制尚待进一步研究证明。  相似文献   

5.
6.
The histone deacetylase inhibitor and potential anti-cancer drug sodium butyrate is a general inducer of growth arrest, differentiation, and in certain cell types, apoptosis. In human CCRF-CEM, acute T lymphoblastic leukemia cells, butyrate, and other histone deacetylase inhibitors caused G2/M cell cycle arrest as well as apoptotic cell death. Forced G0/G1 arrest by tetracycline-regulated expression of transgenic p16/INK4A protected the cells from butyrate-induced cell death without affecting the extent of histone hyperacetylation, suggesting that the latter may be necessary, but not sufficient, for cell death induction. Nuclear apoptosis, but not G2/M arrest, was delayed but not prevented by the tripeptide broad-range caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp.fluoromethylketone (zVAD) and, to a lesser extent, by the tetrapeptide 'effector caspase' inhibitors benzyloxycarbonyl-Asp-Glu-Val-Asp.fluoromethylketone (DEVD) and benzyloxycarbonyl-Val-Glu-Ile-Asp.fluoromethyl-ketone (VEID); however, the viral protein inhibitor of 'inducer caspases', crmA, had no effect. Bcl-2 overexpression partially protected stably transfected CCRF-CEM sublines from butyrate-induced apoptosis, but showed no effect on butyrate-induced growth inhibition, further distinguishing these two butyrate effects. c-myc, constitutively expressed in CCRF-CEM cells, was down-regulated by butyrate, but this was not causative for cell death. On the contrary, tetracycline-induced transgenic c-myc sensitized stably transfected CCRF-CEM derivatives to butyrate-induced cell death.  相似文献   

7.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

8.
Sodium butyrate (NaBu) is known to enhance the rate of biosynthesis of recombinant proteins in Chinese hamster ovary cells (CHO). Here we demonstrate that supplementation with NaBu during rapid growth brings about abrupt death of the cells. The death of the cells is due to apoptosis, as assessed by intranucleosomal DNA fragmentation. The promotion of apoptotic death of the cells could be partially blocked by treatment with the well-known antioxidant, N-acetylcysteine (NAC). Strikingly, the NAC treatment enhanced the production of recombinant EPO two-fold compared with that of the culture without NAC supplementation. These results showed that NaBu treatment supplemented with NAC not only inhibits apoptosis, but also exerts a synergistic effect on the biosynthesis of recombinant EPO.  相似文献   

9.
Sodium butyrate (NaBu) is known to enhance the rate of biosynthesis of recombinant proteins in Chinese hamster ovary cells (CHO). Here we demonstrate that supplementation with NaBu during rapid growth brings about abrupt death of the cells. The death of the cells is due to apoptosis, as assessed by intranucleosomal DNA fragmentation. The promotion of apoptotic death of the cells could be partially blocked by treatment with the well-known antioxidant, N-acetylcysteine (NAC). Strikingly, the NAC treatment enhanced the production of recombinant EPO two-fold compared with that of the culture without NAC supplementation. These results showed that NaBu treatment supplemented with NAC not only inhibits apoptosis, but also exerts a synergistic effect on the biosynthesis of recombinant EPO.  相似文献   

10.
The human eosinophilic leukemia cell line, EoL-1, differentiated with butyrate as an eosinophilic cellular model was evaluated for peroxidase-dependent tyrosine nitration. Butyrate suppressed cell growth and induced eosinophilic granules in EoL-1 cells after 9 days of culture. Peroxidase activity was detected biochemically and histochemically from 3-day cultures and it increased in a time dependent manner. This peroxidase activity was inhibited by cyanide. Nitrotyrosine formation catalysed by peroxidase using hydrogen peroxide and nitrite was detected at a high level similar to that of mature eosinophils. However, no expression of eosinophil peroxidase (EPO) was detected by RT-PCR or immunocytochemistry. In contrast, the induction of myeloperoxidase (MPO) by butyrate was clearly detected by RT-PCR, Northern blot, and immunocytochemical staining. These results suggest that butyrate induces MPO rather than EPO in EoL-1 cells and that the formation of nitrotyrosine in butyrate-induced cells is dependent on MPO.  相似文献   

11.
In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.  相似文献   

12.
Oh HK  So MK  Yang J  Yoon HC  Ahn JS  Lee JM  Kim JT  Yoo JU  Byun TH 《Biotechnology progress》2005,21(4):1154-1164
Sodium butyrate (NaBu) is used as a productivity enhancer for the production of therapeutic recombinant proteins in Chinese hamster ovary (CHO) cells. However, NaBu is well-known for having a cytotoxic effect, thereby inducing apoptosis. As an endeavor to reduce this defect, we studied 11 antioxidants known for inhibiting apoptosis, according to a Plackett-Burman statistical design on CHO cells producing recombinant interferon-beta-1a (IFN-beta). None of the antioxidants that we tested were as effective as N-acetylcystein (NAC) from the point of view of maintaining long-term survival of CHO cells and increasing the production of IFN-beta. In 7.5-L perfusion bioreactor cultures, the addition of NaBu and NAC elongated the culture period to almost 200 h throughout production phase and increased the production yield by 2-fold compared to control cultures containing only NaBu. Glycosylation patterns of produced IFN-beta at each run were also compared in IEF analysis. IEF profiles of where NaBu and NAC were added showed to be more isoforms with a lower pI than those of the control run. The sialic acid content was also increased by 17.7% according to HPLC analysis. Taken together, the data obtained demonstrate that the addition of NAC has positive effects on the elongation of the culture period, improving the production and increasing the sialylation of IFN-beta in NaBu-treated CHO cells.  相似文献   

13.
A differentiation inducer (sodium butyrate) encapsulated in liposomes that are in turn covalently linked to anti-Lex monoclonal antibody, SH1 (IgG3 isotype), was successfully targeted to human colonic adenocarcinoma HRT-18 and HT29 cells expressing Lex antigen in vitro as well as in vivo in athymic nu/nu mice. Tumor cell growth was significantly inhibited and was associated with changes in cell morphology and increases in membrane-bound alkaline phosphatase and gamma-glutamyltranspeptidase, indicating the occurrence of butyrate-induced differentiation.  相似文献   

14.
15.
Chinese hamster ovary (CHO) cells, that are widely used for production of therapeutic proteins, are subjected to apoptosis and autophagy under the stresses induced by conditions such as nutrient deprivation, hyperosmolality and addition of sodium butyrate. To achieve a cost-effective level of production, it is important to extend the culture longevity. Until now, there have been numerous studies in which apoptosis of recombinant CHO (rCHO) cells was inhibited, resulting in enhanced production of therapeutic proteins. Recently, autophagy in rCHO cells has drawn attention because it can be genetically and chemically controlled to increase cell survival and productivity. Autophagy is a global catabolic process which involves multiple pathways and genes that regulate the lysosomal degradation of intracellular components. A simultaneous targeting of anti-apoptosis and pro-autophagy could lead to more efficient protection of cells from stressful culture conditions. In this regard, it is worthwhile to have a detailed understanding of the autophagic pathway, in order to select appropriate genes and chemical targets to manage autophagy in rCHO cells, and thus to enhance the production of therapeutic proteins.  相似文献   

16.
Phospholipids are fascinating in terms of important bio-functional compounds. The present work investigated the effect of polyunsaturated phosphatidylcholine (PC) and phosphatidylserine (PS) on butyrate-induced growth inhibition, differentiation and apoptosis using Caco-2 cells. Growth inhibition of Caco-2 cells became apparent 24 h after addition of PC while it took 48 h with PS. Alkaline phosphatase activity of Caco-2 cells increased with combined PC or PS and sodium butyrate (NaBT) at 72 h, indicating that PC and PS enhanced cell differentiation in the presence of NaBT. An increased enrichment factor was also found when cells were treated with combinations of PC or PS and NaBT. These results suggest that marine PC and PS can be considered to be potentially useful colon cancer chemotherapy agents with high bio-availability.  相似文献   

17.
To investigate the effect of culture pH in the range of 6.85-7.80 on cell growth and erythropoietin (EPO) production at 32.5 and 37.0 degrees C, serum-free suspension cultures of recombinant CHO cells (rCHO) were performed in a bioreactor with pH control. Lowering culture temperature from 37.0 to 32.5 degrees C suppressed cell growth, but cell viability remained high for a longer culture period. Regardless of culture temperature, the highest specific growth rate (mu) and maximum viable cell concentration were obtained at pH values of 7.00 and 7.20, respectively. Like mu, the specific consumption rates of glucose and glutamine decreased at 32.5 degrees C compared to 37.0 degrees C. In addition, they increased with increasing culture pH. Culture pH at 32.5 degrees C affected specific EPO productivity (q(EPO)) in a different fashion from that at 37 degrees C. At 37 degrees C, the q(EPO) was fairly constant in the pH range of 6.85-7.80, while at 32.5 degrees C, the q(EPO) was significantly influenced by culture pH. The highest q(EPO) was obtained at pH 7.00 and 32.5 degrees C, and its value was approximately 1.5-fold higher than that at pH 7.00 and 37.0 degrees C. The proportion of acidic EPO isoforms, which is a critical factor for high in vivo biological activity of EPO, was highest in the stationary phase of growth, regardless of culture temperature and pH. Although cell viability rapidly decreased in death phase at both 32.5 and 37.0 degrees C, the significant degradation of produced EPO, probably by the action of proteases released from lysed cells, was observed only at 37.0 degrees C. Taken together, through the optimization of culture temperature and pH, a 3-fold increase in maximum EPO concentration and a 1.4-fold increase in volumetric productivity were obtained at pH 7.00 and 32.5 degrees C when compared with those at 37.0 degrees C. These results demonstrate the importance of optimization of culture temperature and pH for enhancing EPO production in serum-free, suspension culture of rCHO cells.  相似文献   

18.
19.
促进CHO细胞生长及其产物hNGF表达的培养条件的初步研究   总被引:1,自引:1,他引:0  
以稳定表达人神经生长因子(hNGF)的重组工程CHO细胞株为对象,采用无血清流加悬浮培养(Fed batch culture)方式,考察使用基础培养基(无特殊添加物),分别添加丁酸钠、DMSO、KH2PO4的培养基及不同培养温度(32℃和37℃)对细胞生长和重组蛋白表达的影响。每日取样检测细胞密度、细胞活率、葡萄糖浓度、重组蛋白浓度。结果表明细胞培养温度由37℃下降至32℃,细胞生长周期明显延长,重组蛋白产量增加。5mmol/L丁酸钠和2% DMSO的加入虽然提高了重组蛋白的表达量,但严重抑制细胞生长。最大的蛋白比生成速率(qNGF)出现在37℃培养且添加2% DMSO的培养条件下,而最高蛋白表达量则出现于32℃培养添加3.65mmol/L KH2PO4的培养条件下。研究表明,将培养温度设为32℃,在基础培养基中添加3.65mmol/L KH2PO4或1% DMSO是提高hNGF表达水平的有效方法。  相似文献   

20.
Sodium butyrate was used to enhance expression levels and thereby facilitate the generation of analytical quantities of nine different tissue plasminogen activator (tPA) analogues expressed under the control of the cytomegalovirus immediate early (CMV IE) promoter by the Chinese hamster ovary (CHO) mammalian expression system. Production involved growth in roller bottles, using serum free or low serum media formulations, together with repetitive, sodium butyrate inductions. Average inductions in the presence of sodium butyrate ranged from 2 to 9-fold relative to uninduced controls, using cell lines with no previous butyrate exposure. Retardation of growth rate by butyrate minimized the need to split cells during the production runs, extending longevity of roller bottles containing cells secreting at induced levels. SDS-PAGE analyses indicate a consistently high percentage of single-chain material. Measurements of specific activity and fibrinogen fragment enhancement for one of the analogues demonstrate that neither of these two critical parameters are affected by production in the presence of butyrate. Induction kinetic data and growth curves for the expression of sCD4 under control of the SV40 early promoter demonstrate that the benefits of butyrate can be realized with different promoters and heterologous genes, and are additive when used in conjunction with an amplified cell line constitutively expressing at elevated levels. This work demonstrates the practical application of sodium butyrate in the production of analytical quantities of protein from the CHO expression system, and suggests a role for sodium butyrate in commercial scale processes as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号