首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Resonance Raman spectra have been measured to characterize the heme environment in aldoxime dehydratase (OxdA), a novel hemoprotein, which catalyzes the dehydration of aldoxime into nitrile. The spectra showed that the ferric heme in the enzyme is six-coordinate low spin, whereas the ferrous heme is five-coordinate high spin. We assign a prominent vibration that occurs at 226 cm(-1) in the ferrous enzyme to the Fe-proximal histidine stretching vibration. In the CO-bound form of OxdA, the correlation between the Fe-CO stretching (512 cm(-1)) and C-O stretching (1950 cm(-1)) frequencies also supports our assignment of proximal histidine coordination.  相似文献   

2.
Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. This novel MnII-dependent extracellular enzyme (Mr = 46,000) contains a single protoporphyrin IX prosthetic group and oxidizes phenolic lignin model compounds as well as a variety of other substrates. To elucidate the heme environment of this enzyme, we have studied its electron paramagnetic resonance and resonance Raman spectroscopic properties. These studies indicate that the native enzyme is predominantly in the high-spin ferric form and has a histidine as fifth ligand. The reduced enzyme has a high-spin, pentacoordinate ferrous heme. Fluoride and cyanide readily bind to the sixth coordination position of the heme iron in the native form, thereby changing MnP into a typical high-spin, hexacoordinate fluoro adduct or a low-spin, hexacoordinate cyano adduct, respectively. EPR spectra of 14NO- and 15NO-adducts of ferrous MnP were compared with those of horseradish peroxidase (HRP); the presence of a proximal histidine ligand was confirmed from the pattern of superhyperfine splittings of the NO signals centered at g approximately equal to 2.005. The appearance of the FeII-His stretch at approximately 240 cm-1 and its apparent lack of deuterium sensitivity suggest that the N delta proton of the proximal histidine of the enzyme is more strongly hydrogen bonded than that of oxygen carrier globins and that this imidazole ligand may be described as having a comparatively strong anionic character. Although resonance Raman frequencies for the spin- and coordination-state marker bands of native MnP, nu 3 (1487), nu 19 (1565), and nu 10 (1622 cm-1), do not fall into frequency regions expected for typical penta- or hexacoordinate high-spin ferric heme complexes, ligation of fluoride produces frequency shifts of these bands very similar to those observed for cytochrome c peroxidase and HRP. Hence, these data strongly suggest that the iron in native MnP is predominantly high-spin pentacoordinate. Analysis of the Raman frequencies indicates that the dx2-y2 orbital of the native enzyme is at higher energy than that of metmyoglobin. These features of the heme in MnP must be favorable for the peroxidase catalytic mechanism involving oxidation of the heme iron to FeIV. Consequently, it is most likely that the heme environment of MnP resembles those of HRP, cytochrome c peroxidase, and lignin peroxidase.  相似文献   

3.
The hemin complex of Hmu O, a 24-kDa soluble heme degradation enzyme in Corynebacterium diphtheriae, is coordinated axially to a neutral imidazole of a proximal histidine residue in Hmu O. To identify which of the eight histidines in Hmu O is the proximal heme ligand, we have constructed and expressed the plasmids for eight His --> Ala Hmu O mutants. Reconstituted with hemin, the active site structures and enzymatic activity of these mutants have been examined by EPR, resonance Raman, and optical absorption spectroscopy. EPR of the NO-bound ferrous heme-Hmu O mutant complexes reveals His(20) as the proximal heme ligand in Hmu O, and this is confirmed by resonance Raman results from the ligand-free ferrous heme-H20A. All eight His --> Ala mutants bind hemin stoichiometrically, proving that none of the histidines is essential for hemin-Hmu O formation. However, His(20) is crucial to Hmu O catalysis. Its absence by point mutation has inhibited the conversion of hemin to biliverdin. The ferric heme-H20A complex is pentacoordinate. Resonance Raman of the CO-bound ferrous heme-H20A corroborates this and reveals an Fe-C-O bending mode, delta(Fe-C-O), the first reported for a pentacoordinate CO-bound hemeprotein. The appearance of delta(Fe-C-O) in C. diphtheriae Hmu O H20A but not mammalian HO-1 mutant H25A indicates that the heme environment between the two heme oxygenases is different.  相似文献   

4.
Photodissociated cytochrome c oxidase: cryotrapped metastable intermediates   总被引:2,自引:0,他引:2  
By freezing CO-bound cytochrome c oxidase at cryogenic temperatures, we have been able to cryotrap metastable intermediates of photodissociation. The differences in the resonance Raman spectrum between these intermediates and ligand-free reduced cytochrome oxidase at cryogenic temperatures are the same as those between the phototransient and the fully reduced preparation detected with 10-ns excitation at room temperature. The largest difference occurs in the iron-histidine stretching mode of cytochrome a3, which shifts by up to 8 cm-1 to higher frequency in the photoproduct. At 4 K the iron-histidine mode displays two unrelaxed frequencies in the photoproduct, which we attribute to two different unrelaxed structures of the heme pocket. The frequencies and intensities of the lines in the resonance Raman spectrum are sensitive to the incident laser power density in both the ligand-free fully reduced preparation and the photoproduct even at 4 K. At 77 K the carbonyl stretching mode of the formyl group in cytochrome a32+ is especially sensitive to laser power, displaying two frequencies-1666 cm-1 at low-flux density and 1674 cm-1 at high-flux density. These frequencies may reflect a change in conformation of the formyl group or a change in its interaction with the protein such as in hydrogen bonding to the carbonyl of the formyl group. The absence of immediate relaxation of the CO photoproduct must be considered when one studies the structure and kinetics of the O2 intermediates that are formed in triple trapping and flow-flash experiments following photodissociation of the CO-bound enzyme.  相似文献   

5.
Resonance Raman spectra of reduced CO-bound cytochrome oxidase obtained at two different excitation frequencies (441.6 and 413.1 nm) are compared with the spectra of the fully reduced enzyme. In the spectra of the CO-bound complex only the cytochrome a modes are strongly enhanced with 441.6 nm excitation and only the modes of the CO-bound cytochrome a3 heme are strongly enhanced with 413.1-nm excitation. In the fully reduced complex with both excitation frequencies, modes of both cytochrome a and a3 are enhanced. By subtraction we are able to uncover the complete spectrum of the fully reduced ligand-free cytochrome a3 heme. Thus, we report the discrete resonance Raman spectra of cytochromes a2+, a2+3, and a2+3 (CO). The spectra of fully reduced cytochrome a and ligand-free cytochrome a3 are very different especially in the low frequency region. Binding CO to ferrous cytochrome a3 results in electronic structure changes in the heme analogous to those in hemoglobin and myoglobin, from which we conclude that there is nothing electronically unique in the ferrous cytochrome a3 heme to account for its catalytic properties.  相似文献   

6.
Resonance Raman spectra are reported for FeII and FeIII forms of cytochrome c peroxidase (CCP) mutants prepared by site-directed mutagenesis and cloning in Escherichia coli. These include the bacterial "wild type", CCP(MI), and mutations involving groups on the proximal (Asp-235----Asn, Trp-191----Phe) and distal (Trp-51----Phe, Arg-48----Leu and Lys) side of the heme. These spectra are used to assess the spin and ligation states of the heme, via the porphyrin marker band frequencies, especially v3, near 1500 cm-1, and, for the FeII forms, the status of the Fe-proximal histidine bond via its stretching frequency. The FeII-His frequency is elevated to approximately 240 cm-1 in CCP(MI) and in all of the distal mutants, due to hydrogen-bonding interactions between the proximal His-175 N delta and the carboxylate acceptor group on Asp-235. The FeII-His RR band has two components, at 233 and 246 cm-1, which are suggested to arise from populations having H-bonded and deprotonated imidazole; these can be viewed in terms of a double-well potential involving proton transfer coupled to protein conformation. The populations shift with changing pH, possibly reflecting structure changes associated with protonation of key histidine residues, and are influenced by the Leu-48 and Phe-191 mutations. A low-spin FeII form is seen at high pH for the Lys-48, Leu-48, Phe-191, and Phe-51 mutants; for the last three species, coordination of the distal His-52 is suggested by a approximately 200-cm-1 RR band assignable to Fe(imidazole)2 stretching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
M Tsubaki  Y Ichikawa  Y Fujimoto  N T Yu  H Hori 《Biochemistry》1990,29(37):8805-8812
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Resonance Raman spectra were measured for various C-type cytochromes (mammalian cytochrome c, bacterial cytochrome c3, algal photosynthetic cytochrome f, and alkylated cytochrome c) and a B-type cytochrome (cytochrome b5) in their reduced and oxidized states. (1) For ferrous alkylated cytochrome c, a Raman line sensitive to the replacement of an axial ligand of the heme iron uas found around 1540 cm=1. This ligand-sensitive Raman line indicated the transition from acidic (1545 cm-1) to alkaline (1533 cm-1) forms with pK 7.9. The pH dependence of the Raman spectrum corresponded well to that of the optical absorption spectra. (2) For ferrous cytochrome f, the ligand-sensitive Raman line was found at the same frequency as cytochrome c (1545 cm-1). Accordingly two axial ligands are likely to be histidine and methionine as in cytochrome c. (3) For ferrous cytochrome c3, the frequency of the ligand-sensitive Raman line was between those of cytochrome c and cytochrome b5. Since two axial ligands of the heme iron in cytochrome c3 might be histidines. However, a combination of histidine and methionine as a possible set of two axial ligands was not completely excluded for one or two of the four hemes. (4) In ferrous cytochrome b5, two weak Raman lines appeared at 1302 and 1338 cm-1 instead of the strongest band at 1313 cm-1 of C-type ferrous cytochromes. This suggests the practical use of these bands for the identification of types of cytochromes. The difference in frequency and intensity between B- and C-types of hemes implies that the low effective symmetry of the heme in ferrous cytochrome c is due to vibrational coupling of ring modes with peripheral substituents rather than geometrical disortion of heme.  相似文献   

9.
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.  相似文献   

10.
Resonance Raman studies of lactoperoxidase   总被引:2,自引:0,他引:2  
Resonance Raman (RR) spectra obtained at three excitation wavelengths are reported for various ferric, ferrous, and ferryl derivatives of bovine lactoperoxidase. The RR spectra of the ferric derivatives show the full complement of the vinyl stretching and scissor modes indicating that the two vinyls in the protoporphyrin IX prosthetic group are present in unmodified forms. The cysteine thiol complex exhibits a RR spectrum identical to that of the native enzyme, an observation which strongly suggests a nonheme binding site for the thiol substrates. The different ferrous complexes of lactoperoxidase which result from heme reduction at slightly alkaline and acidic pH gave identical low-frequency RR spectra. Differences are observed, however, in the high-frequency region. Reduction in the presence of cyanide, however, yields two time-resolved complexes. Changes in the ligand field during the conversion to the final form of the cyanoferrous complex are proposed based on the changes observed in the low-frequency vibrational spectrum. Comparisons are made between the low-frequency RR spectra of the limiting form of the cyanoferrous and the nitric oxide lactoperoxidase complexes. The similarity between the RR spectra of these two complexes in the 150-500 cm-1 region supports the assignment of structures for these complexes where the six-coordinate heme iron is displaced from the heme plane and away from the proximal histidine ligand.  相似文献   

11.
KatG, the catalase-peroxidase from Mycobacterium tuberculosis, has been characterized by resonance Raman, electron spin resonance, and visible spectroscopies. The mutant KatG(S315T), which is found in about 50% of isoniazid-resistant clinical isolates, is also spectroscopically characterized. The electron spin resonance spectrum of ferrous nitrosyl KatG is consistent with a proximal histidine ligand. The Fe-His stretching vibration observed at 244 cm(-1) for ferrous wild-type KatG and KatG(S315T) confirms the imidazolate character of the proximal histidine in their five-coordinate high-spin complexes. The ferrous forms of wild-type KatG and KatG(S315T) are mixtures of six-coordinate low-spin and five-coordinate high-spin hemes. The optical and resonance Raman signatures of ferric wild-type KatG indicate that a majority of the heme exists in a five-coordinate high-spin state, but six-coordinate hemes are also present. At room temperature, more six-coordinate low-spin heme is observed in ferrous and ferric KatG(S315T) than in the WT enzyme. While the nature of the sixth ligand of LS ferric wild-type KatG is not completely clear, visible, resonance Raman, and electron spin resonance data of KatG(S315T) indicate that its sixth ligand is a neutral nitrogen donor. Possible effects of these differences on enzyme activity are discussed.  相似文献   

12.
Electronic absorption and magnetic circular dichroism (MCD) spectroscopic data at 4 degrees C are reported for exogenous ligand-free ferric forms of cytochrome c peroxidase (CCP) in comparison with two other histidine-ligated heme proteins, horseradish peroxidase (HRP) and myoglobin (Mb). In particular, we have examined the ferric states of yeast wild-type CCP (YCCP), CCP (MKT) which is the form of the enzyme that is expressed in and purified from E. coli, and contains Met-Lys-Thr (MKT) at the N-terminus, CCP (MKT) in the presence of 60% glycerol, lyophilized YCCP, and alkaline CCP (MKT). The present study demonstrates that, while having similar electronic absorption spectra, the MCD spectra of ligand-free ferric YCCP and CCP (MKT) are somewhat varied from one another. Detailed spectral analyses reveal that the ferric form of YCCP, characterized by a long wavelength charge transfer (CT) band at 645 nm, exists in a predominantly penta-coordinate state with spectral features similar to those of native ferric HRP rather than ferric Mb (His/water hexa-coordinate). The electronic absorption spectrum of ferric CCP (MKT) is similar to those of the penta-coordinate states of ferric YCCP and ferric HRP including a CT band at 645 nm. However, its MCD spectrum shows a small trough at 583 nm that is absent in the analogous spectra of YCCP and HRP. Instead, this trough is similar to that seen for ferric myoglobin at about 585 nm, and is attributed (following spectral simulations) to a minor contribution (< or = 5%) in the spectrum of CCP (MKT) from a hexa-coordinate low-spin species in the form of a hydroxide-ligated heme. The MCD data indicate that the lyophilized sample of ferric YCCP (lambda CT = 637 nm) contains considerably increased amounts of hexa-coordinate low-spin species including both His/hydroxide and bis-His species. The crystal structure of a spectroscopically similar sample of CCP (MKT) (lambda CT = 637 nm) solved at 2.0 A resolution is consistent with His/hydroxide coordination. Alkaline CCP (pH 9.7) is proposed to exist as a mixture of hexa-coordinate, predominantly low-spin complexes with distal His 52 and hydroxide acting as distal ligands based on MCD spectral comparisons.  相似文献   

13.
Biochemical studies of flavohemoglobin (Hmp) from Escherichia coli suggest that instead of aerobic oxygen delivery, a dioxygenase converts NO to NO3(-) and anaerobically, an NO reductase converts NO to N(2)O. To investigate the structural features underlying the chemical reactivity of Hmp, we have measured the resonance Raman spectra of the ligand-free ferric and ferrous protein and the CO derivatives of the ferrous protein. At neutral pH, the ferric protein has a five-coordinate high-spin heme, similar to peroxidases. In the ferrous protein, a strong iron-histidine stretching mode is present at 244 cm(-1). This frequency is much higher than that of any other globin discovered to date, although it is comparable to those of peroxidases, suggesting that the proximal histidine has imidazolate character. In the CO derivative, an open and a closed conformation were detected. The distal environment of the closed conformation is very polar, where the heme-bound CO strongly interacts with the B10 Tyr and/or the E7 Gln. These data demonstrate that the active site structure of Hmp is very similar to that of peroxidases and is tailored to perform oxygen chemistry.  相似文献   

14.
The pH and temperature dependences of the 270-MHz proton nuclear magnetic resonance and resonance Raman spectra of Thermus thermophilus cytochrome c-552 were studied. Observation of the NMR methyl signal of the iron-bound methionine indicates that a methionine residue is the sixth ligand of heme iron in both ferric and ferrous states, although the environment of this methionine is not similar to that in mitochondrial cytochrome c. The NMR methyl signal of the coordinated methionine in the ferrous state was observed even at 87 degrees C, indicating the retention of the methionine ligand at the sixth coordination position. None of resonance Raman lines in ferrous cytochrome c-552 at higher temperatures showed a prominant temperature-dependent frequency shift, which implies that the heme iron was still bound with strong ligands and retained the low-spin state. In either redox state overall thermal denaturation did not occur even at 87 degrees C, although the ferric form existed in thermal spin mixture of the low-spin and high-spin species at higher temperatures. The hyperfine-shifted NMR resonances of the ferric form indicated rapid exchange of the sixth ligand at alkaline pH in the process of a single-step alkaline isomerization.  相似文献   

15.
To investigate the functional and structural roles of the proximal thiolate ligand in cytochrome P450cam, we prepared the C357H mutant of the enzyme in which the axial cysteine residue (Cys357) was replaced with a histidine residue. We obtained the unstable C357H mutant by developing a new preparation procedure involving in vitro folding of P450cam from the inclusion bodies. The C357H mutant in the ferrous-CO form exhibited the Soret peak at 420 nm and the Fe-CO stretching line at 498 cm-1, indicating a neutral histidine residue as the axial ligand. However, another internal ligand is coordinated to the heme iron as the sixth ligand in the ferric and ferrous forms of the C357H mutant, suggesting the collapse of the substrate-binding site. The C357H mutant showed no catalytic activity for camphor hydroxylation and the reduced heterolytic/homolytic ratio of the O-O bond scission in the reaction with cumene hydroperoxide. The present observations indicate that the thiolate coordination in P450cam is important for the construction of the heme pocket and the heterolysis of the O-O bond.  相似文献   

16.
Cytochrome b562-o complex, a terminal oxidase in the respiratory chain of aerobically grown Escherichia coli, has been studied by resonance Raman spectroscopy in its air-oxidized, dithionite-reduced, and reduced and CO-ligated states. In the reduced state, with a 406.7-nm excitation, there appeared 1494 and 1473 cm-1 lines, indicating that low spin and high spin components are included in the cytochrome b562-o complex. For the air-oxidized protein, resonance Raman lines were observed at 1372, 1503, and 1580 cm-1 with a 413.1-nm excitation, indicating that there is a ferric low spin heme. In addition, a weak but appreciable Raman line was observed at 1480 cm-1 assignable to a ferric high spin heme. Accordingly, it was concluded that low spin and high spin components are included in the cytochrome b562-o complex in the reduced and the air-oxidized states. In the CO-ligated state, with a defocused laser beam of 413.1 nm, two Raman bands assignable to the Fe-CO stretching mode have been observed at 489 and 523 cm-1, as a major and a minor component, respectively. When the laser beam was focused upon the sample to cause a photodissociation of CO from the heme moiety, the intensity of the major band at 489 cm-1 was reduced as expected. On the other hand, the minor band at 523 cm-1 remained still obvious. It was suggested that the cytochrome b562-o complex may have an additional anomalous site for CO that is resistant to photodissociation.  相似文献   

17.
The heme vicinities of the acid and alkaline forms of native (Fd(III)) horseradish peroxidase were investigated in terms of the magnetic circular dichroism (MCD) spectroscopy. The MCD spectrum of the acid form of native horseradish peroxidase was characteristic of a ferric high spin heme group. The resemblance in the MCD spectrum between the acid form and acetato-iron (III)protoporphyrin IX dimethyl ester suggests that the heme iron of the acid form has the electronic structure similar to that in a pentocoordinated heme complex. The MCD spectra of native horseradish peroxidase did not shown any substantial pH dependence in the pH range from 5.20 to 9.00. The MCD spectral change indicated the pK value for the equilibrium between the acid and alkaline forms to be 11.0 which agrees with the results from other methods. The alkaline form of native horseradish peroxidase at pH 12.01 exhibited the MCD spectrum of a low spin complex. The near infrared MCD spectrum suggests that the alkaline form of native horseradish peroxidase has a 6th ligand somehow different from a normal nitrogen ligand such as histidine or lysine. It implicates that the alkaline form has an overall ligand field strength of between the low spin component of metmyoglobin hydroxide and metmyoglobin azide.  相似文献   

18.
Amino acid residues in the ligand binding pocket of human neuroglobin have been identified by site-directed mutagenesis and their properties investigated by resonance Raman and flash photolysis methods. Wild-type neuroglobin has been shown to have six-coordinate heme in both ferric and ferrous states. Substitution of His96 by alanine leads to complete loss of heme, indicating that His96 is the proximal ligand. The resonance Raman spectra of M69L and K67T mutants were similar to those of wild-type (WT) neuroglobin in both ferric and ferrous states. By contrast, H64V was six-coordinate high-spin and five-coordinate high-spin in the ferric and ferrous states, respectively, at acidic pH. The spectra were pH-dependent and six-coordinate with the low-spin component dominating at alkaline pH. In a double mutant H64V/K67T, the high-spin component alone was detected in the both ferric and the ferrous states. This implies that His64 is the endogenous ligand and that Lys67 is situated nearby in the distal pocket. In the ferrous H64V and H64V/K67T mutants, the nu(Fe-His) stretching frequency appears at 221 cm(-1), which is similar to that of deoxymyoglobin. In the ferrous CO-bound state, the nu(Fe-CO) stretching frequency was detected at 521 and 494 cm(-1) in WT, M69L, and K67T, while only the 494 cm(-1) component was detected in the H64V and H64V/K67T mutants. Thus, the 521 cm(-1) component is attributed to the presence of polar His64. The CO binding kinetics were biphasic for WT, H64V, and K67T and monophasic for H64V/K67T. Thus, His64 and Lys67 comprise a unique distal heme pocket in neuroglobin.  相似文献   

19.
The Soret absorption band of the ferrous carbon monoxide (CO) complex of cytochrome c peroxidase exhibited a blue shift from 423.7 to 420 nm upon an increase in pH from 6.5 to 8.5. The spectral change was reversible with an isosbestic point at 422 nm. The pH dependence of this spectral change gave a sigmoidal curve fitted well to a theoretical curve of a cooperative release of two protons with a pK value of 7.5, indicating the existence of the acidic and alkaline forms of the ferrous CO enzyme. Upon irradiation of light flash (100 J of power and 30-microseconds), the heme-bound CO was readily dissociated in both acidic and alkaline forms with a quantum yield of approximately unity. On the other hand, the rate of recombination of the dissociated CO with the heme iron was significantly different between these two forms; the recombination rate constants were 1.1 X 10(3) and 3.0 X 10(4) M-1 S-1 at 25 degrees C for the acidic and alkaline forms, respectively. At intermediate pH values, kinetics of recombination were biphasic, consisting of the slow and fast processes with the appropriate rate constants mentioned above. When the fraction of the fast process was plotted against pH, the pH profile coincided with the spectrophotometric pH titration curve described above. Thus, it was concluded that the acidic and alkaline forms of the enzyme were responsible for the slow and fast processes, respectively. In infrared spectroscopy, the acidic form showed a narrow CO stretching band at 1922 cm-1 with a half-band width of 12.5 cm-1, while the alkaline form exhibited a broad CO-stretching band at 1948 cm-1 with a half-band width of 33 cm-1. Significance of these results are discussed in relation to the structure of the heme vicinity on the CO complex of cytochrome c peroxidase.  相似文献   

20.
A series of ferric and ferrous derivatives of wild-type ascorbate peroxidase (APX) and of an engineered K+-site mutant of APX that has had its potassium cation binding site removed have been examined by electronic absorption and magnetic circular dichroism (MCD) spectroscopy at 4??°C. Wild-type ferric APX has spectroscopic properties that are very similar to those of ferric cytochrome c peroxidase (CCP) and likely exists primarily as a five-coordinate high-spin heme ligated on the proximal side by a histidine at pH 7. There is also evidence for minority contributions from six-coordinate high- and low-spin species (histidine-water, histidine-hydroxide, and bis-histidine). The K+-site mutant of APX varies considerably in the electronic absorption and MCD spectra in both the ferric and ferrous states when compared with spectra of the wild-type APX. The electronic absorption and MCD spectra of the engineered K+-site APX mutant are essentially identical to those of cytochrome b 5, a known bis-imidazole (histidine) ligated heme system. It therefore appears that the K+-site mutant of APX has undergone a conformational change to yield a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH. This conformational change is the result of mutagenesis of the protein to remove the K+-binding site which is located ~8?Å from the peroxide binding pocket. Thus, mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号