首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cooperative organization of enzymes by cells is a key feature for the efficiency of living systems. In the field of nanotechnologies, effort currently aims at mimicking this natural organization. Nanoscale resolution and high-registration alignment are necessary to control enzyme distribution in nano-containers or on the surface of solid supports. Virus capsid self-assembly is driven by precise supramolecular combinations of protein monomers, which have made them attractive building blocks to engineer enzyme nano-carriers (ENCs). We discuss some examples of what in our opinion constitute the latest advances in the use of plant viruses, bacteriophages and virus-like particles (VLPs) as nano-scaffolds for enzyme selection, enzyme confinement and patterning, phage therapy, raw material processing, and single molecule enzyme kinetics studies.  相似文献   

2.
There is currently great interest in the development of methods to modulate the function of diverse classes of target proteins with chemicals (agonists or antagonists). These would be valuable reagents for biomedical research and some might serve as potential drug leads. Traditionally, most chemicals that modulate protein function have been enzyme inhibitors isolated in functional screens specific for the enzyme of interest. However, recent efforts from many laboratories have suggested that relatively simple binding assays may provide a more convenient and general route to chemical modulators. We review here this work with a particular emphasis on peptide modulators.  相似文献   

3.
Summary A deficiency of the enzyme adenosine deaminase is associated with an autosomal recessive form of severe combined immunodeficiency disease in man. The molecular forms of the normal human enzyme have now been well characterized in an effort to better understand the nature of the enzyme defect in affected patients.In some human tissues adenosine deaminase exists predominantly as a small molecular form while in other tissues a large form composed of adenosine deaminase (small form) and an adenosine deaminase-binding protein predominates. The small form of the enzyme purified to homogeneity by antibody affinity chromatography is a monomer of native molecular weight of 37,600. The adenosine deaminase-binding protein, purified by adenosine deaminase affinity chromatography, appears to be a dimer of native molecular weight 213,000 and contains carbohydrate. Based on direct binding measurements, chemical cross-linking studies and sedimentation equilibrium analyses, small form adenosine deaminase has been shown to combine with purified binding protein in a molar ratio of 2:1 respectively to produce the large form adenosine deaminase.Reduced, but widely ranging levels of adenosine deaminating activity, have been reported in various tissues of adenosine deaminase deficient patients. Further, the characteristics of this residual enzyme activity have been analyzed immunochemically to substantiate genetic heterogeneity in this disorder.While many types of immunodeficiency are currently recognized in man, in most cases the molecular defect is unknown. The discovery of a deficiency of the enzyme, adenosine deaminase, ADA, (EC 3.5.4.4), in some patients with severe combined immunodeficiency disease represented an early clue to the pathogenesis of immune dysfunction at the molecular level1-4. Affected patients with markedly reduced levels of ADA exhibit a defect of both cellular and humoral immunity characterized clinically by severe recurrent infections with a fatal outcome if untreated. Attempts to elucidate the nature of the genetic mutation(s) leading to the reduction of ADA activity in these immunodeficient patients have been complicated in part by an incomplete understanding of the nature of ADA in normal tissues. In this review we will consider the structural characteristics of the normal and mutant forms of ADA as they are currently understood.  相似文献   

4.
Cyanuric acid was likely present on prebiotic Earth, may have been a component of early genetic materials, and is synthesized industrially today on a scale of more than one hundred million pounds per year in the United States. In light of this, it is not surprising that some bacteria and fungi have a metabolic pathway that sequentially hydrolyzes cyanuric acid and its metabolites to release the nitrogen atoms as ammonia to support growth. The initial reaction that opens the s-triazine ring is catalyzed by the unusual enzyme cyanuric acid hydrolase. This enzyme is in a rare protein family that consists of only cyanuric acid hydrolase (CAH) and barbiturase, with barbiturase participating in pyrimidine catabolism by some actinobacterial species. The X-ray structures of two cyanuric acid hydrolase proteins show that this family has a unique protein fold. Phylogenetic, bioinformatic, enzymological, and genetic studies are consistent with the idea that CAH has an ancient protein fold that was rare in microbial populations but is currently becoming more widespread in microbial populations in the wake of anthropogenic synthesis of cyanuric acid and other s-triazine compounds that are metabolized via a cyanuric acid intermediate. The need for the removal of cyanuric acid from swimming pools and spas, where it is used as a disinfectant stabilizer, can potentially be met using an enzyme filtration system. A stable thermophilic cyanuric acid hydrolase from Moorella thermoacetica is being tested for this purpose.  相似文献   

5.
Many fungi growing on plant biomass produce proteins currently classified as glycoside hydrolase family 61 (GH61), some of which are known to act synergistically with cellulases. In this study we show that PcGH61D, the gene product of an open reading frame in the genome of Phanerochaete chrysosporium, is an enzyme that cleaves cellulose using a metal-dependent oxidative mechanism that leads to generation of aldonic acids. The activity of this enzyme and its beneficial effect on the efficiency of classical cellulases are stimulated by the presence of electron donors. Experiments with reduced cellulose confirmed the oxidative nature of the reaction catalyzed by PcGH61D and indicated that the enzyme may be capable of penetrating into the substrate. Considering the abundance of GH61-encoding genes in fungi and genes encoding their functional bacterial homologues currently classified as carbohydrate binding modules family 33 (CBM33), this enzyme activity is likely to turn out as a major determinant of microbial biomass-degrading efficiency.  相似文献   

6.
A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1) is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness. We used a UV mutagenesis approach in Mycosphaerella graminicola, a key pathogen of wheat to compare the nature, frequencies and impact of target mutations towards five subclasses of carboxamides. From this screen we identified 27 amino acid substitutions occurring at 18 different positions on the 3 subunits constituting the ubiquinone binding (Qp) site of the enzyme. The nature of substitutions and cross resistance profiles indicated significant differences in the binding interaction to the enzyme across the different inhibitors. Pharmacophore elucidation followed by docking studies in a tridimensional SDH model allowed us to propose rational hypotheses explaining some of the differential behaviors for the first time. Interestingly all the characterized substitutions had a negative impact on enzyme efficiency, however very low levels of enzyme activity appeared to be sufficient for cell survival. In order to explore the impact of mutations on pathogen fitness in vivo and in planta, homologous recombinants were generated for a selection of mutation types. In vivo, in contrast to previous studies performed in yeast and other organisms, SDH mutations did not result in a major increase of reactive oxygen species levels and did not display any significant fitness penalty. However, a number of Qp site mutations affecting enzyme efficiency were shown to have a biological impact in planta.Using the combined approaches described here, we have significantly improved our understanding of possible resistance mechanisms to carboxamides and performed preliminary fitness penalty assessment in an economically important plant pathogen years ahead of possible resistance development in the field.  相似文献   

7.
This review intends to give a view of the properties and uses of the lipase from Mucor javanicus (MJL) (currently Mucor circinelloides). MJL was described in 1969, its structure is still to be resolved and published. The enzyme is commercialized, but not in any immobilized form; this may have reduced its use by academic groups. This review shows the main features of the enzyme, the immobilization efforts (from mycelium bound enzymes to sophisticated immobilization protocols) and the use of the enzyme in fine chemistry and oil and fats modification. Special interest has been paid to researches where MJL has been compared to other lipases.  相似文献   

8.
9.
Abstract

Intoxication by organophosphorous (OP) insecticides and nerve agents is often lethal and currently available therapeutics are often ineffective. A range of catalytic and stoichiometric OP scavengers have been investigated for use as potential treatments for OP poisoning. Recent studies have shown that one enzyme, OpdA, an enzyme involved in organophosphorous degradation, was an effective treatment for OP insecticide poisoning in animal models. Here we have tested OpdA for its ability to detoxify G- and V-type nerve agents in vitro. Although OpdA was found to have high catalytic activities for G-series toxins (soman and cyclosarin), it was substantially less active with V-type nerve agents. The activity towards V-series agents was close to the theoretical maximum for this enzyme (i.e. the rate determined by the chemistry of the leaving group); it seems unlikely that enzyme engineering or directed evolution could be used to improve upon this activity without a significant change in its reaction mechanism.  相似文献   

10.
Two well-established methods to prepare glycogen are available: (1) extraction from natural resources such as shellfish and animal tissues; (2) synthesis from glucose-1-phosphate using two enzymes, α-glucan phosphorylase (EC 2.4.1.1) and branching enzyme (EC 2.4.1.18). We have developed a novel enzymatic process for glycogen production, in which short-chain amylose is first prepared from starch or dextrin by using isoamylase (EC 3.2.1.68), and then branching enzyme and amylomaltase (EC 2.4.1.25) are added to synthesize glycogen. Our enzymatic process, using isoamylase, branching enzyme and amylomaltase, is currently the most efficient for glycogen production. Furthermore, the molecular weight of glycogen is controllable in a range of 3.0×106 to 3.0×107 by adjusting some parameters of the reaction.  相似文献   

11.
Lactate dehydrogenase (LDH) is one of the glycolytic enzymes, which have been proved to have the capability to reverse non-specific adsorption on cellular membranous structures in vitro, as well as on the structural proteins of the contractile system of muscle cells. It has been suggested that this binding may play a physiological role, as it alters the enzyme's kinetic properties. Our previous studies on this enzyme showed that its interaction with some anionic phospholipids reveals similar characteristics and similar effect on the activity of the enzyme to those which had been observed for the interaction with membranous structures. Disruption of the lipid bilayers by nonionic detergent (Tween 20) restored the enzyme activity inhibited by the presence of phosphatidylserine (PS) liposomes. In this study, we used the measurement of enzyme tryptophanyl fluorescence spectra to monitor the interaction and possible changes in the enzyme conformation. The investigation provided further evidence of the importance of the bilayer structure in this interaction. Similarly to the effect on the activity of the enzyme, the addition of Tween 20 diminishes the quenching of the LDH tryptophanyl fluorescence, and finally completely restores the fluorescence.  相似文献   

12.
Inhibitors of protein-protein interactions are currently considered as perspective prototypes of a new generation of drugs. The most attractive targets for such inhibitors are the oligomeric enzymes which active sites are formed by amino acid residues from different subunits. HIV-1 protease (HIVp), which is active only as a homodimer form, is the classic example of such enzymes. We have developed a new approach for experimental screening of HIVp dimerization inhibitors. It is based on an original biosensor test-system for differential analysis of interaction of tested substances with HIVp dimers and monomers. Using this test-system we have analyzed the most perspective candidate substances predicted by the method of virtual screening, and also some derivatives of glycyrrhizin, triterpenic and steroid glycosides. In the results of this study we have found one compound, which preferentially interacts with HIVp monomers and inhibits in vitro activity of this enzyme with the IC50 value of about 10?6 M.  相似文献   

13.
Fluorinated compounds are finding increasing uses in several applications. They are employed in almost all areas of modern society. These compounds are all produced by chemical synthesis and their abundance highly contrasts with fluorinated molecules of natural origin. To date, only some plants and a handful of actinomycetes species are known to produce a small number of fluorinated compounds that include fluoroacetate (FA), some ω-fluorinated fatty acids, nucleocidin, 4-fluorothreonine (4-FT), and the more recently identified (2R3S4S)-5-fluoro-2,3,4-trihydroxypentanoic acid. This largely differs from other naturally produced halogenated compounds, which totals more than 5000. The mechanisms underlying biological fluorination have been uncovered after discovering the first actinomycete species, Streptomyces cattleya, that is capable of producing FA and 4-FT, and a fluorinase has been identified as the enzyme responsible for the formation of the C–F bond. The discovery of this enzyme has opened new perspectives for the biotechnological production of fluorinated compounds and many advancements have been achieved in its application mainly as a biocatalyst for the synthesis of [18F]-labeled radiotracers for medical imaging. Natural fluorinated compounds may also be derived from abiogenic sources, such as volcanoes and rocks, though their concentrations and production mechanisms are not well known. This review provides an outlook of what is currently known about fluorinated compounds with natural origin. The paucity of these compounds and the biological mechanisms responsible for their production are addressed. Due to its relevance, special emphasis is given to the discovery, characterization and biotechnological potential of the unique fluorinase enzyme.  相似文献   

14.
On February 11, 2020, the World Health Organization officially announced the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as an emerging recent pandemic illness, which currently has approximately taken the life of two million persons in more than 200 countries. Medical, clinical, and scientific efforts have focused on searching for new prevention and treatment strategies. Regenerative medicine and tissue engineering focused on using stem cells (SCs) have become a promising tool, and the regenerative and immunoregulatory capabilities of mesenchymal SCs (MSCs) and their exosomes have been demonstrated. Moreover, it has been essential to establishing models to reproduce the viral life cycle and mimic the pathology of COVID-19 to understand the virus's behavior. The fields of pluripotent SCs (PSCs), induced PSCs (iPSCs), and artificial iPSCs have been used for this purpose in the development of infection models or organoids. Nevertheless, some inconveniences have been declared in SC use; for example, it has been reported that SARS-CoV-2 enters human cells through the angiotensin-converting enzyme 2 receptor, which is highly expressed in MSCs, so it is important to continue investigating the employment of SCs in COVID-19, taking into consideration their advantages and disadvantages. In this review, we expose the use of different kinds of SCs and their derivatives for studying the SARS-CoV-2 behavior and develop treatments to counter COVID-19.  相似文献   

15.
The primary biosynthetic reaction of cytokinin is thought to be the isopentenylation of an adenine nucleotide such as AMP with dimethylallylpyrophosphate. For many years, the nature of the enzyme catalyzing this reaction in higher plants had not been identified despite the physiological importance of these compounds. However, the completion of the genomic sequence of Arabidopsis thaliana, a model plant for genetic research, has provided us with new opportunities to solve these problems. Recent studies have revealed the cytokinin biosynthesis enzyme is encoded by a small multigene family that is structurally related to both bacterial adenylate isopentenyltransferase and tRNA isopentenyltransferase. Interestingly, biochemical studies of some of the gene products indicate that ADP and ATP, rather than AMP, are preferentially used as substrates for this biosynthetic reaction. These findings require reconsideration of the currently accepted cytokinin biosynthetic pathway. In addition, there is an increasing body of evidence suggesting that the expression of these cytokinin synthesis genes is affected by the availability of nutrients.  相似文献   

16.
Cytochemical data in the literature reporting localization of sodium, potassium adenosine triphosphatase (Na(+), K(+)-ATPase) in the blood-brain barrier (BBB) have been contradictory. Whereas some studies showed the enzyme to be located exclusively on the abluminal endothelial plasma membrane, others demonstrated it on both the luminal and abluminal membranes. The influence of fixation on localization of the enzyme was not considered a critical factor, but our preliminary studies showed data to the contrary. We therefore quantitatively investigated the effect of commonly used fixatives on the localization pattern of the enzyme in adult rat cerebral microvessels. Fixation with 1%, 2%, and 4% formaldehyde allowed deposition of reaction product on both the luminal and abluminal plasma membranes. The luminal reaction was reduced with increasing concentration of formaldehyde. Glutaraldehyde at 0.1%, 0.25%, 0.5%, in combination with 2% formaldehyde, drastically inhibited the luminal reaction. The abluminal reaction was not significantly altered in all groups. These results show that luminal localization of BBB Na(+), K(+)-ATPase is strongly dependent on fixation. The lack of luminal localization, as reported in the literature, may have been the result of fixation. The currently accepted abluminal polarity of the enzyme should be viewed with caution.  相似文献   

17.
Oxalate decarboxylase (ODC) is a manganese-containing, multimeric enzyme of the cupin protein superfamily. ODC is one of the three enzymes identified to decompose oxalic acid and oxalate, and within ODC catalysis, oxalate is split into formate and CO2. This primarily intracellular enzyme is found in fungi and bacteria, and currently the best characterized enzyme is the Bacillus subtilis OxdC. Although the physiological role of ODC is yet unidentified, the feasibility of this enzyme in diverse biotechnological applications has been recognized for a long time. ODC could be exploited, e.g., in diagnostics, therapeutics, process industry, and agriculture. So far, the sources of ODC enzyme have been limited including only a few fungal and bacterial species. Thus, there is potential for identification and cloning of new ODC variants with diverse biochemical properties allowing e.g. more enzyme fitness to process applications. This review gives an insight to current knowledge on the biochemical characteristics of ODC, and the relevance of oxalate-converting enzymes in biotechnological applications. Particular emphasis is given to fungal enzymes and the inter-connection of ODC to fungal metabolism of oxalic acid.  相似文献   

18.
The alpha-globin mRNA has previously been shown to be the target of an erythroid-enriched endoribonuclease (ErEN) activity which cleaves the mRNA within the 3'-untranslated region. We have currently undertaken a biochemical approach to purify this enzyme and have begun characterization of the enzyme to determine requirements for substrate recognition as well as optimal cleavage conditions. Through mutational analysis and truncations we show that a 26-nucleotide region of the alpha-globin 3'-untranslated region is an autonomous element that is both necessary and sufficient for cleavage by ErEN. Mutations throughout this region abolish cleavage activity by ErEN suggesting that the entire sequence is important for recognition and cleavage. ErEN is most active under biological salt concentrations and temperature and activity of the enzyme does not require cations. The size for ErEN was estimated by denaturing gel filtration analysis and is approximately 40 kDa. Interestingly, the exquisite specificity of ErEN cleavage became compromised with increased purity of the enzyme suggesting the involvement of other proteins in specificity of ErEN cleavage. Nondenaturing gel filtration of MEL extract demonstrated that ErEN is a component of an approximately 160 kDa complex implying that additional proteins may regulate ErEN activity and provide increased cleavage specificity.  相似文献   

19.
Adenosine to inosine editing at the wobble position allows decoding of multiple codons by a single tRNA. This reaction is catalyzed by adenosine deaminases acting on tRNA (ADATs) and is essential for viability. In bacteria, the anticodon-specific enzyme is a homodimer that recognizes a single tRNA substrate (tRNA(Arg)(ACG)) and can efficiently deaminate short anticodon stem-loop mimics of this tRNA in vitro. The eukaryal enzyme is composed of two nonidentical subunits, ADAT2 and ADAT3, which upon heterodimerization, recognize seven to eight different tRNAs as substrates, depending on the organism, and require a full-length tRNA for activity. Although crystallographic data have provided clues to why the bacterial deaminase can utilize short substrates, residues that provide substrate binding and recognition with the eukaryotic enzymes are not currently known. In the present study, we have used a combination of mutagenesis, binding studies, and kinetic analysis to explore the contribution of individual residues in Trypanosoma brucei ADAT2 (TbADAT2) to tRNA recognition. We show that deletion of the last 10 amino acids at the C terminus of TbADAT2 abolishes tRNA binding. In addition, single alanine replacements of a string of positively charged amino acids (KRKRK) lead to binding defects that correlate with losses in enzyme activity. This region, which we have termed the KR-domain, provides a first glance at key residues involved in tRNA binding by eukaryotic tRNA editing deaminases.  相似文献   

20.
The purpose of this paper is to suggest that the prominence of Haldane's explanation for enzyme catalysis significantly hinders investigations in understanding enzyme structure and function. This occurs despite the existence of much evidence that the Haldane model cannot embrace. Some of the evidence, in fact, disproves the model. A brief history of the explanation of enzyme catalysis is presented. The currently accepted view of enzyme catalysis--the Haldane model--is examined in terms of its strengths and weaknesses. An alternate model for general enzyme catalysis (the Shifting Specificity model) is reintroduced and an assessment of why it may be superior to the Haldane model is presented. Finally, it is proposed that a re-examination of many current aspects in enzyme structure and function (specifically, protein folding, x-ray and NMR structure analyses, enzyme stability curves, enzyme mimics, catalytic antibodies, and the loose packing of enzyme folded forms) in terms of the new model may offer crucial insights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号