首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization and manipulation of aluminum (Al) tolerance genes offers a solution to Al toxicity problems in crop cultivation on acid soil, which composes approximately 40% of all arable land. By exploiting the rice (Oryza sativa L.)/rye (Secale cereale L.) syntenic relationship, the potential for map-based cloning of genes controlling Al tolerance in rye (the most Al-tolerant cereal) was explored. An attempt to clone an Al tolerance gene (Alt3) from rye was initiated by using DNA markers flanking the rye Alt3 gene, from many cereals. Two rice-derived, PCR-based markers flanking the Alt3 gene, B1 and B4, were used to screen 1,123 plants of a rye F2 population segregating for Alt3. Fifteen recombinant plants were identified. Four additional RFLP markers developed from rice genes/putative genes, spanning 10 kb of a 160-kb rice BAC, were mapped to the Alt3 region. Two rice markers flanked the Alt3 locus at a distance of 0.05 cM, while two others co-segregated with it. The rice/rye micro-colinearity worked very well to delineate and map the Alt3 gene region in rye. A rye fragment suspected to be part of the Alt3 candidate gene was identified, but at this level, the rye/rice microsynteny relationship broke down. Because of sequence differences between rice and rye and the complexity of the rye sequence, we have been unable to clone a full-length candidate gene in rye. Further attempts to clone a full-length rye Alt3 candidate gene will necessitate the creation of a rye large-insert library.  相似文献   

2.
Aluminium toxicity is a major problem for crop production on acid soils. Rye (Secale cereale L.) has one of the most efficient group of genes for aluminium tolerance, at least, four independent and dominant loci, Alt1, Alt2, Alt3 and Alt4, located on chromosome arms 6RS, 3RS, 4RL and 7RS, have been described. The increasing availability of expressed sequence tags in rye and related cereals provides a valuable resource of non-anonymous DNA molecular markers. In order to obtain simple sequence repeat (SSR) markers related with Al tolerance more than 1,199 public accessible rye cDNA sequences from Al-stressed roots were exploited as a resource for SSR markers development. From a total of 21 S. cereale microsatellite (SCM) loci analysed, 12 were located on chromosomes 1R, 2R, 3R, 4R and 5R, using wheat–rye addition lines or mapped using a F2 population segregating for Al tolerance. Seven SCM loci were included in a rye map with other SCIM and RAPD markers. Moreover, 14 SCM loci could be associated to proteins with known or unknown function. The possible implications of these sequences in aluminium tolerance mechanisms are discussed.  相似文献   

3.
  • Aluminium (Al) toxicity is the major constraint for crop productivity in acid soils. Wild rye species (Secale spp.) exhibit high Al tolerance, being a good source of genes related to this trait. The Alt1 locus located on the 6RS chromosome arm is one of the four main loci controlling Al tolerance in rye and is known to harbour major genes but, so far, none have been found.
  • Through synteny among the short arm of the rye chromosome 6R and the main grass species, we found a candidate MATE gene for the Atl1 locus, later named ScMATE3, which was isolated and characterized in different Secale species.
  • The sequence comparisons revealed both intraspecific and interspecific variability, with high sequence conservation in the Secale genus. SNP with replacement substitution that changed the structure of the protein and can be involved in the Al tolerance trait were found in ScMATE3 gene. The predicted subcellular localization of ScMATE3 is the vacuolar membrane which, together with the phylogenetic relationships performed with other MATE genes of the Poaceae related to Al detoxification, suggest involvement of ScMATE3 in an internal tolerance mechanism. Moreover, expression studies of this gene in rye corroborate its contribution in some Al resistance mechanisms.
  • The ScMATE3 gene is located on the 6RS chromosome arm between the same markers in which the Alt1 locus is involved in Al resistance mechanisms in rye, thus being a good candidate gene for this function.
  相似文献   

4.
Rye (Secale cereale L.) is considered to be the most aluminum (Al)-tolerant species among the Triticeae. It has been suggested that aluminum tolerance in rye is controlled by three major genes (Alt genes) located on rye chromosome arms 3RL, 4RL, and 6RS, respectively. Screening of an F6 rye recombinant inbred line (RIL) population derived from the cross between an Al-tolerant rye (M39A-1–6) and an Al-sensitive rye (M77A-1) showed that a single gene controls aluminum tolerance in the population analyzed. In order to identify molecular markers tightly linked to the gene, we used a combination of amplified fragment length polymorphism (AFLP) and bulked segregant analysis techniques to evaluate the F6 rye RIL population. We analyzed approximately 22,500 selectively amplified DNA fragments using 204 primer combinations and identified three AFLP markers tightly linked to the Alt gene. Two of these markers flanked the Alt locus at distance of 0.4 and 0.7 cM. Chromosomal localization using cloned AFLP and a restriction fragment length polymorphism (RFLP) marker indicated that the gene was on the long arm of rye chromosome 4R. The RFLP marker (BCD1230) co-segregated with the Alt gene. Since the gene is on chromosome 4R, the gene was designated as Alt3. These markers are being used as a starting point in the construction of a high resolution map of the Alt3 region in rye. Received: 29 March 2000 / Accepted: 9 July 2001  相似文献   

5.
6.
Barley is the most sensitive among the cereals to aluminium (Al) stress and breeding for more tolerant cultivars is a priority. To enhance selection efficiency for Al tolerance in barley, PCR-based AFLP and microsatellite markers linked to a locus conferring tolerance to aluminium were identified. The study used F(2) progeny derived from a single cross between Yambla (moderately tolerant of Al) and WB229 (tolerant of Al) and developed hydroponic pulse-recovery screening methods to assess tolerance of phenotypes based on root growth. The segregation ratios of tolerant and sensitive genotypes and F(3) progeny testing suggest that a single major gene controlled Al tolerance ( Alt). In order to determine the chromosomal location of the Alt gene, we used the AFLP technique coupled with bulk segregant analysis. We evaluated tolerant and sensitive bulks using 30 combinations of EcoRI/ MseI primers, and 12 of these permitted differentiation of the sensitive and tolerant bulks. More than 1,000 amplified fragments were obtained, and 98 polymorphic bands were scored. AFLP analysis of wheat-barley chromosome addition lines indicated that the Alt gene was located on barley chromosome 4H. Four chromosome 4H-specific microsatellite markers (Bmac310, Bmag353, HVM68 and HVMCABG) were tightly linked to Alt. The large allelic variation detected with microsatellite marker Bmag353 allowed us to implement this marker for routine marker-assisted selection for Al tolerance, and 396 plants could be screened on a single gel.  相似文献   

7.
In several crop species within the Triticeae tribe of the grass family Poaceae, single major aluminum (Al) tolerance genes have been identified that effectively mitigate Al toxicity, a major abiotic constraint to crop production on acidic soils. However, the trait is quantitatively inherited in species within other tribes, and the possible ancestral relationships between major Al tolerance genes and QTL in the grasses remain unresolved. To help establish these relationships, we conducted a molecular genetic analysis of Al tolerance in sorghum and integrated our findings with those from previous studies performed in crop species belonging to different grass tribes. A single locus, AltSB, was found to control Al tolerance in two highly Al tolerant sorghum cultivars. Significant macrosynteny between sorghum and the Triticeae was observed for molecular markers closely linked to putatively orthologous Al tolerance loci present in the group 4 chromosomes of wheat, barley, and rye. However, AltSB was not located within the homeologous region of sorghum but rather mapped near the end of sorghum chromosome 3. Thus, AltSB not only is the first major Al tolerance gene mapped in a grass species that does not belong to the Triticeae, but also appears to be different from the major Al tolerance locus in the Triticeae. Intertribe map comparisons suggest that a major Al tolerance QTL on rice chromosome 1 is likely to be orthologous to AltSB, whereas another rice QTL on chromosome 3 is likely to correspond to the Triticeae group 4 Al tolerance locus. Therefore, this study demonstrates a clear evolutionary link between genes and QTL encoding the same trait in distantly related species within a single plant family.  相似文献   

8.
Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC1F1 plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs.  相似文献   

9.
Among cereal crops, rye is one of the most tolerant species to aluminum. A candidate gene approach was used to determine the likely molecular identity of an Al tolerance locus (Alt4). Using PCR primers designed from a wheat aluminum tolerance gene encoding an aluminum-activated malate transporter (TaALMT1), a rye gene (ScALMT1) was amplified, cloned and sequenced. Subsequently, the ScALMT1 gene of rye was found to be located on 7RS by PCR amplification using the wheat–rye addition lines. SNP polymorphisms for this gene were detected among the parents of three F2 populations that segregate for the Alt4 locus. A map of the rye chromosome 7R, including the Alt4 locus ScALMT1 and several molecular markers, was constructed showing a complete co-segregation between Alt4 and ScALMT1. Furthermore, expression experiments were carried out to clarify the function of this candidate gene. Briefly, the ScALMT1 gene was found to be primarily expressed in the root apex and upregulated when aluminum was present in the medium. Five-fold differences in the expression were found between the Al tolerant and the Al non-tolerant genotypes. Additionally, much higher expression was detected in the rye genotypes than the moderately tolerant “Chinese Spring” wheat cultivar. These results suggest that the Alt4 locus encodes an aluminum-activated organic acid transporter gene that could be utilized to increase Al tolerance in Al sensitive plant species. Finally, TaALMT1 homologous sequences were identified in different grasses and in the dicotyledonous plant Phaseolus vulgaris. Our data support the hypothesis of the existence of a common mechanism of Al tolerance encoded by a gene located in the homoeologous group four of cereals. G. Fontecha and J. Silva-Navas contributed equally to this work.  相似文献   

10.
Rye is a diploid crop species with many outstanding qualities, and is important as a source of new traits for wheat and triticale improvement. Rye is highly tolerant of aluminum (Al) toxicity, and possesses a complex structure at the Alt4 Al tolerance locus not found at the corresponding locus in wheat. Here we describe a BAC library of rye cv. Blanco, representing a valuable resource for rye molecular genetic studies, and assess the library’s suitability for investigating Al tolerance genes. The library provides 6 × genome coverage of the 8.1 Gb rye genome, has an average insert size of 131 kb, and contains only ~2% of empty or organelle-derived clones. Genetic analysis attributed the Al tolerance of Blanco to the Alt4 locus on the short arm of chromosome 7R, and revealed the presence of multiple allelic variants (haplotypes) of the Alt4 locus in the BAC library. BAC clones containing ALMT1 gene clusters from several Alt4 haplotypes were identified, and will provide useful starting points for exploring the basis for the structural variability and functional specialization of ALMT1 genes at this locus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
A new aluminum tolerance gene located on rye chromosome arm 7RS   总被引:2,自引:0,他引:2  
Rye has one of the most efficient groups of genes for aluminum tolerance (Alt) among cultivated species of Triticeae. This tolerance is controlled by, at least, three independent and dominant loci (Alt1, Alt2, and Alt3) located on chromosome arms 6RS, 3RS, and 4RL, respectively. The segregation of Alt genes and several random amplified polymorphic DNA (RAPD), Secale cereale inter-microsatellite (SCIM), and Secale cereale microsatellite (SCM) markers in three F(2) between a tolerant cultivar (Ailés) and a non-tolerant inbred line (Riodeva) were studied. The segregation ratio obtained for aluminum tolerance in the three F(2) populations analyzed was 3:1 (tolerant:non-tolerant), indicating that tolerance is controlled by one dominant locus. SCIM811(1376) was linked to an Alt gene in the three F(2) populations studied, and three different SCIMs and one RAPD (SCIM811(1376), SCIM812(626), SCIM812(1138), and OPQ4(725)) were linked to the Alt gene in two F(2) populations. This result indicated that the same Alt gene was segregating in the three crosses. SCIM819(1434) and OPQ4(578) linked to the tolerance gene in one F(2) population were located using wheat-rye ditelosomic addition lines on the 7RS chromosome arm. The Alt locus is mapped between SCIM819(1434) and the OPQ4(578) markers. Two microsatellite loci (SCM-40 and SCM-86), previously located on chromosome 7R, were also linked to the Alt gene. Therefore, the Alt gene segregating in these F(2) populations is new and probably could be orthologous to the Alt genes located on wheat chromosome arm 4DL, on barley chromosome arm 4HL, on rye chromosome arm 4RL, and rice chromosome 3. This new Alt gene located on rye chromosome arm 7RS was named Alt4. A map of rye chromosome 7R with the Alt4 gene, 16 SCIM and RAPD, markers and two SCM markers was obtained.  相似文献   

12.
Genetic and physical characterization of chromosome 4DL in wheat.   总被引:8,自引:0,他引:8  
R Milla  J P Gustafson 《Génome》2001,44(5):883-892
The long arm of chromosome 4D in wheat (Triticum aestivum L.) has been shown in previous studies to harbor genes of agronomic importance. A major dominant gene conferring Aluminum (Al) tolerance (Alt2 in 'Chinese Spring' and AltBH in 'BH 1146'), and the Knal locus controlling the K+/Na+ discrimination in saline environments have been mapped to this chromosome arm. However, accurate information on the genetic and physical location of markers related to any of these genes is not available and would be useful for map-based cloning and marker-assisted plant breeding. In the present study, using a population of 91 recombinant inbred lines segregating for Al tolerance, we provide a more extensive genetic linkage map of the chromosome arm 4DL based on RFLP, SSR, and AFLP markers, delimiting the AltBH gene to a 5.9-cM interval between markers Xgdm125 and Xpsr914. In addition, utilizing a set of wheat deletion lines for chromosome arm 4DL, the AltBH gene was physically mapped to the distal region of the chromosome, between deletion breakpoints 0.70 and 0.86, where the kilobase/centimorgan ratio is assumed to be low, making the map-based cloning of the gene a more realistic goal. The polymorphism rates in chromosome arm 4DL for the different types of markers used were extremely low, as confirmed by the physical mapping of AFLPs. Finally, analysis of 1 Mb of contiguous sequence of Arabidopsis chromosome 5 flanking the gene homologous to the BCD1230 clone (a cosegregating marker in our population coding for a ribulose-5-phosphate-3-epimerase gene), revealed a previously identified region of stress-related and disease-resistance genes. This could explain the collinearity observed in comparative mapping studies among different species and the low level of polymorphism detected in the chromosome arm 4DL in hexaploid wheat.  相似文献   

13.
Summary Screening large populations of plant species for Al tolerance requires simple and rapid tests. In this study, root characteristics of 12 cultivars of triticale (X Triticosecale, Witt Mack), wheat (Triticum aestivum L.), and rye (Secale cereale L.) were measured in nutrient solution with 0 or 6 ppm Al added. Aluminum injury to roots of triticale and wheat was characterized by decreases in root length, increases in the number of roots, and in Al-sensitive Redcoat and Arthur wheats by decrease in root weight. Root length and number of roots were correlated in triticale (r=−0.73*) and in wheat (r=−0.85*). Root length was also correlated with root weight in wheat (r=0.65*); there was no relationship between the number of roots and weight. Differences in Al tolerance of cultivars of the three species were greater when the solution was adjusted to pH 4.8 only on the first day of the experiment than when pH was maintained at pH 4.8 throughout the growing period. Triticale and rye cultivars low in ability to increase solution pH gradually overcame Al toxicity by increasing the nutrient solution pH between 12 and 22 days. Aluminum sensitive triticale and wheat accumulated more Al in roots than tolerant cultivars when the solution pH was not adjusted daily; but no differences in Al accumulation were obtained between wheat cultivars at constant pH value. This study indicated that root length and number of roots can be reliably used for screening triticales for Al tolerance within 12 days of exposure to Al. Root length, Al concentration, and dry weight after 22 days of Al treatment were also reliable criteria for evaluating differential Al tolerances among triticale cultivars.  相似文献   

14.
Triticale (X Triticosecale Wittm.) is a hybrid derived by crossing wheat (Triticum sp.) and rye (Secale sp.). Till date, only a limited number of simple sequence repeat (SSRs) markers have been used in triticale molecular analyses and there is a need to identify dedicated high-throughput molecular markers to better exploit this crop. The objective of this study was to develop and evaluate diversity arrays technology (DArT) markers in triticale. DArT marker technology offers a high level of multiplexing. Development of new markers from triticale accessions was combined with mining the large collection of previously developed markers in rye and wheat. Three genotyping arrays were used to analyze a collection of 144 triticale accessions. The polymorphism level ranged from 8.6 to 23.8% for wheat and rye DArT markers, respectively. Among the polymorphic markers, rye markers were the most abundant (3,109) followed by wheat (2,214) and triticale (719). The mean polymorphism information content values were 0.34 for rye DArT markers and 0.37 for those from triticale and wheat. High correlation was observed between similarity matrices derived from rye, triticale, wheat and combined marker sets, as well as for the cophenetic values matrices. Cluster analysis revealed genetic relationships among the accessions consistent with the agronomic and pedigree information available. The newly developed triticale DArT markers as well as those originated from rye and wheat provide high quality markers that can be used for diversity analyses and might be exploited in a range of molecular breeding and genomics applications in triticale.  相似文献   

15.
BACKGROUND AND AIMS: As with other crop species, Al tolerance in rice (Oryza sativa) is widely different among cultivars, and the mechanism for tolerance is unknown. The Ca2+-displacement hypothesis, that is, Al displaces Ca2+ from critical sites in the root apoplast, was predicted to be the essential mechanism for causing Al toxicity in rice cultivars. If displacement of Ca is an essential cause of Al toxicity in rice, Al toxicity may show the same trend as toxicities of elements such as Sr and Ba that are effective in displacing Ca. METHODS: The interactive effects of Al, Ca, Sr and Ba on root elongation of rice cultivars with different Al tolerances were evaluated in hydroponic culture. Al and Ca accumulation in root tips was also investigated. KEY RESULTS AND CONCLUSIONS: Not only Al but also Sr and Ba applications inhibited root growth of rice cultivars under low Ca conditions. As expected, rice cultivars more tolerant of Sr and Ba were also tolerant of Al (japonica > indica). Although Mg application did not affect Sr or Ba toxicity, Mg alleviated Al toxicity to the same level as Ca application. In addition, Ca application decreased the Al content in root tips without displacement. These results suggest that Ca does not have a specific, irreplaceable role in Al toxicity, unlike Sr and Ba toxicities. Alleviation of Al toxicity with increasing concentrations of Ca in rice cultivars is due to increased ionic strength, not due to decreased Al activity. The difference in Al tolerance between indica and japonica cultivars disappears under high ionic strength conditions, suggesting that different electrochemical characteristics of root-tip cells are related to the significant difference in Al tolerance under low ionic strength conditions.  相似文献   

16.
17.
18.
Soluble aluminum (Al3+) is a major constraint to plant growth in highly acidic soils, which comprise up to 50% of the world??s arable land. The primary mechanism of Al resistance described in plants is the chelation of Al3+ cations by release of organic acids into the rhizosphere. Candidate aluminum tolerance genes encoding organic acid transporter of the ALMT (aluminum-activated malate transporter) and MATE (multi-drug and toxic compound extrusion) families have been characterized in several plant species. In this study, we have isolated in five different cultivars the rye ScAACT1 gene, homolog to barley aluminum activated citrate transporter HvAACT1. This gene mapped to the 7RS chromosome arm, 25?cM away from the ScALMT1 aluminum tolerance gene. The gene consisted of 13 exons and 12 introns and encodes a predicted membrane protein that contains the MatE domain and at least seven putative transmembrane regions. Expression of the ScAACT1 gene is Al-induced, but there were differences in the levels of expression among the cultivars analyzed. A new quantitative trait locus for Al tolerance in rye that co-localizes with the ScAACT1 gene was detected in the 7RS chromosome arm. These results suggest that the ScAACT1 gene is a candidate gene for increased Al tolerance in rye. The phylogenetic relationships between different MATE proteins are discussed.  相似文献   

19.
Aluminum (Al) is the main limiting factor for crop production in acidic soils. Efflux of organic acids is one of the mechanisms that determine Al-tolerance, and an Al-activated citrate transporter (multidrug and toxic compound extrusion) MATE1 gene is involved in different species. The contribution of the rye MATE1 gene (ScMATE1) depends on the rye (Secale cereale L.) cultivars and the crosses analyzed; there is no information about different rye species. The cDNA sequences, phylogenetic relationships, Al-tolerance, citrate exudation, and expression of the ScMATE1 gene were analyzed in several cultivars and wild species/subspecies of the Secale genus. Genotypes highly tolerant to Al were found within this genus. For the first time, sequences of the cDNA of the ScMATE1 gene were isolated and characterized in wild ryes. At least two copies of this gene were found likely to be related to Al-tolerance. The sequence comparison of 13 exons of ScMATE1 revealed variability between species, but also inter- and intra-cultivars. Variations were found in the Al-induced expression of ScMATE1 gene, as well as its contribution to Al-tolerance. The pattern of citrate exudation was inducible in most of the species/subspecies studied and constitutive in few. The phylogenetic analysis indicated that ScMATE1 is orthologue of two genes (HvMATE1 and TaMATE1) involved in the Al stress response in barley and wheat, respectively, but not orthologue of SbMATE, implicated in Al-tolerance in sorghum. ScMATE1 is involved in the response to Al stress in ryes, but its contribution to Al-tolerance is complex, and like in other species, there are tolerant and sensitive alleles in the different cultivars and species studied.  相似文献   

20.
Although residue management seems a key factor in residue-mediated weed suppression, very few studies have systematically compared the influence of different residue management strategies on the establishment of crop and weed species. We evaluated the effect of several methods of pre-treatment and placement of winter rye (Secale cereale L.) and winter oilseed rape (Brassica napus L.) residue on seedling emergence under field conditions. For both species two cultivars, differing in allelochemical content, were used. Residues incorporated in the upper soil layer exerted a large inhibitory effect on the establishment of the relatively early emerging lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.) seedlings, whereas the inhibitory effect on the slightly later emerging Stellaria media L. seedlings was variable, and often a stimulatory effect on the very late emerging Chenopodium album L. seedlings was observed. Differences between cover crop cultivars were minor. For winter oilseed rape residue, pre-treatment strongly affected the time-course of residue-mediated effects. Finely ground residues were only inhibitory to seedling establishment during the first two to three weeks, whereas cut residues became inhibitory after this period. For winter rye, residue placement was most important. Residue incorporation gave variable results, whereas placement of winter rye residue on top of the soil inhibited the emergence of all receptor species. In conclusion, the optimal residue management strategy for weed suppression depends both on the cover crop species used and the target weed species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号