首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activin A, a member of the transforming growth factor-beta superfamily, is constitutively expressed in hepatocytes and regulates liver mass through tonic inhibition of hepatocyte DNA synthesis. Follistatin is the main biological inhibitor of activin bioactivity. These molecules may be involved in hepatic fibrogenesis, although defined roles remain unclear. We studied activin and follistatin gene and protein expression in cultured rat hepatic stellate cells (HSCs) and in rats given CCl4 for 8 wk and examined the effect of follistatin administration on the development of hepatic fibrosis. In activated HSCs, activin mRNA was upregulated with high expression levels, whereas follistatin mRNA expression was unchanged from baseline. Activin A expression in normal lobular hepatocytes redistributed to periseptal hepatocytes and smooth muscle actin-positive HSCs in the fibrotic liver. A 32% reduction in fibrosis, maximal at week 4, occurred in CCl4-exposed rats treated with follistatin. Hepatocyte apoptosis decreased by 87% and was maximal at week 4 during follistatin treatment. In conclusion, activin is produced by activated HSCs in vitro and in vivo. Absence of simultaneous upregulation of follistatin gene expression in HSCs suggests that HSC-derived activin is biologically active and unopposed by follistatin. Our in vivo and in vitro results demonstrate that activin-mediated events contribute to hepatic fibrogenesis and that follistatin attenuates early events in fibrogenesis by constraining HSC proliferation and inhibiting hepatocyte apoptosis.  相似文献   

2.
Hepatic stellate cells (HSCs) may play an important role in hepatic immune regulation by producing numerous cytokines/chemokines and expressing Ag-presenting and T cell coregulatory molecules. Due to disruption of the endothelial barrier during cold-ischemic storage and reperfusion of liver grafts, HSCs can interact directly with cells of the immune system. Endotoxin (LPS), levels of which increase in liver diseases and transplantation, stimulates the synthesis of many mediators by HSCs. We hypothesized that LPS-stimulated HSCs might promote hepatic tolerogenicity by influencing naturally occurring immunosuppressive CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Following their portal venous infusion, allogeneic CD4(+) T cells, including Tregs, were found closely associated with HSCs, and this association increased in LPS-treated livers. In vitro, both unstimulated and LPS-stimulated HSCs upregulated Fas (CD95) expression on conventional CD4(+) T cells and induced their apoptosis in a Fas/Fas ligand-dependent manner. By contrast, HSCs induced Treg proliferation, which required cell-cell contact and was MHC class II-dependent. This effect was augmented when HSCs were pretreated with LPS. LPS increased the expression of MHC class II, CD80, and CD86 and stimulated the production of IL-1α, IL-1β, IL-6, IL-10 and TNF-α by HSCs. Interestingly, production of IL-1α, IL-1β, IL-6, and TNF-α was strongly inhibited, but that of IL-10 enhanced in LPS-pretreated HSC/Treg cocultures. Adoptively transferred allogeneic HSCs migrated to the secondary lymphoid tissues and induced Treg expansion in lymph nodes. These data implicate endotoxin-stimulated HSCs as important immune regulators in liver transplantation by inducing selective expansion of tolerance-promoting Tregs and reducing inflammation and alloimmunity.  相似文献   

3.
Human endothelial cells (EC) express MHC class II molecules in vivo and are likely to be involved in presentation of antigens to CD4(+) T cells. We examined, at the single-cell level, EC presentation of superantigens to resting CD4(+) memory T cells. Within 2 h of adherence to class II+ EC early T cell activation is evidenced by translocation of nuclear factor of activated T cells (NFAT), surface expression of CD69, and synthesis of IFN-gamma and IL-2. Naive T cells are not activated. T cell activation is dependent on the prior induction of MHC class II molecules on EC and is blocked by antibodies to LFA-3 (CD58). Our data place EC along a spectrum of antigen-presenting ability. Activated B cells and macrophages trigger more cells to express cytokines than do EC and at lower antigen concentrations; EC are in turn, superior to fibroblasts or smooth muscle cells. Furthermore, the concept of activation thresholds for cytokine synthesis within T cells also extends to earlier activation events: NFAT translocation is relatively easy to trigger, as is CD69 expression; fewer cells can be triggered to express IFN-gamma and fewer still to express IL-2. EC may, therefore, contribute to a graded immune response by inducing qualitatively and quantitatively different responses than professional APC.  相似文献   

4.
The activation of the hepatic stellate cell (HSC) is a key step in liver fibrogenesis. Utilizing large scale sequencing of a 3'-directed cDNA library, we investigated expression profiles of quiescent and activated rat HSCs. During the activation process, O-acetyl disialoganglioside synthase (OAcGD3S) was identified as one of the significant upregulated factors. Upregulation of OAcGD3S in cultured HSCs was confirmed by both Northern and Western blot analyses. OAcGD3S expression in models of experimental liver fibrosis was investigated at the mRNA level using RT-PCR. The expression of OAcGD3S protein in activated rat HSCs and in experimental fibrotic livers was demonstrated by immunohistochemistry. In situ hybridization revealed OAcGD3S mRNA expression in areas of ductular proliferation. Furthermore, O-acetyl GD3 protein was detected in activated rat HSCs and human cirrhosis livers. This study shows that OAcGD3S is strongly expressed during liver fibrogenesis and HSCs seem to be the major cellular sources of OAcGD3S in the liver.  相似文献   

5.
Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.  相似文献   

6.
In an earlier study, we showed that estradiol (E2) inhibits proliferation and transformation in cultured rat hepatic stellate cells (HSCs) and that the actions of E2 are mediated through estrogen receptors (ERs). This study reports on an investigation of the cellular localization of ER subtypes ERalpha and ERbeta using immunohistochemistry in experimental fibrotic liver rats and of each ER subtype expression in cultured rat HSCs by evaluating the produced mRNA and protein. The results indicate that high levels of ERbeta expression and low or no levels of ERalpha expression were observed in normal and fibrotic livers and in quiescent and activated HSCs from both males and females. The specificity of E2-mediated antiapoptotic induction through the ERbeta was shown by dose-dependent inhibition by the pure ER antagonist ICI 182,780 in HSCs which were undergoing early apoptosis. These findings demonstrate for the first time that rat HSCs possess functional Erbeta, but not Eralpha, to respond directly to E2 exposure.  相似文献   

7.
We have previously shown that macrophage infection with Mycobacterium tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) partially inhibits MHC class II surface expression in response to IFN-gamma. The present study examined the nature of class II molecules that do in fact reach the surface of infected cells. Immunostaining with specific Abs that discriminate between mature and immature class II populations showed a predominance of invariant chain (Ii)-associated class II molecules at the surface of BCG-infected cells suggesting that mycobacteria specifically block the surface export of peptide-loaded class II molecules. This phenotype was due to inhibition of IFN-gamma-induced cathepsin S (Cat S) expression in infected cells and the subsequent intracellular accumulation of alphabeta class II dimers associated with the Cat S substrate Ii p10 fragment. In contrast, infection with BCG was shown to induce secretion of IL-10, and addition of blocking anti-IL-10 Abs to cell cultures restored both expression of active Cat S and export of mature class II molecules to the surface of infected cells. Consistent with these findings, expression of mature class II molecules was also restored in cells infected with BCG and transfected with active recombinant Cat S. Thus, M. bovis BCG exploits IL-10 induction to inhibit Cat S-dependent processing of Ii in human macrophages. This effect results in inhibition of peptide loading of class II molecules and in reduced presentation of mycobacterial peptides to CD4(+) T cells. This ability may represent an effective mycobacterial strategy for eluding immune surveillance and persisting in the host.  相似文献   

8.
A successful Th cell response to bacterial infections is induced by mature MHC class II molecules presenting specific Ag peptides on the surface of macrophages. In recent studies, we demonstrated that infection with the conventional vaccine Mycobacterium bovis bacillus Calmette-Guérin (BCG) specifically blocks the surface export of mature class II molecules in human macrophages by a mechanism dependent on inhibition of cathepsin S (Cat S) expression. The present study examined class II expression in macrophages infected with a rBCG strain engineered to express and secrete biologically active human Cat S (rBCG-hcs). Cat S activity was completely restored in cells ingesting rBCG-hcs, which secreted substantial levels of Cat S intracellularly. Thus, infection with rBCG-hcs, but not parental BCG, restored surface expression of mature MHC class II molecules in response to IFN-gamma, presumably as result of MHC class II invariant chain degradation dependent on active Cat S secreted by the bacterium. These events correlated with increased class II-directed presentation of mycobacterial Ag85B to a specific CD4(+) T cell hybridoma by rBCG-hcs-infected macrophages. Consistent with these findings, rBCG-hcs was found to accelerate the fusion of its phagosome with lysosomes, a process that optimizes Ag processing in infected macrophages. These data demonstrated that intracellular restoration of Cat S activity improves the capacity of BCG-infected macrophages to stimulate CD4(+) Th cells. Given that Th cells play a major role in protection against tuberculosis, rBCG-hcs would be a valuable tuberculosis vaccine candidate.  相似文献   

9.
Apoptosis of T cells contributes to the immune homeostasis in inflamed organs. A prominent T-cell infiltration is usually seen in human chronic active hepatitis, being associated with liver fibrosis. In order to demonstrate T-cell apoptosis in the hepatic fibrotic tissue, we induced T-cell infiltration in the fibrotic liver of the rat by injecting concanavalin A (Con A), a T-cell mitogen. Lymphocytes increased in number with a peak at 1 day, preferentially distributing in the fibrotic tissue rather than the parenchyma. They consisted of CD4-positive and CD8-positive cells, and gave the feature of lymphoblasts. Double staining for CD3 and TUNEL demonstrated that T cells underwent apoptosis. Apoptotic cells were more frequent in the fibrotic livers than the normal livers, and were spatially associated with alpha-smooth muscle actin-positive myofibroblast-like cells that possibly derived from hepatic stellate cells (HSCs) and portal fibroblasts through activation. In vitro experiments demonstrated that lymphocyte apoptosis was more frequently induced in the co-culture of Con A-activated splenic T cells/activated HSCs compared to that induced in activated T cells/quiescent HSCs or resting T cells/activated HSCs. The present results indicate that T cells which have extravasated and infiltrated the hepatic fibrotic tissue undergo apoptosis probably through an interaction with myofibroblast-like cells, suggesting the regulatory role of the latter cells in T-cell accumulation in the fibrotic liver.  相似文献   

10.
Liver fibrosis is an active process that involves changes in cell-cell and cell-extracellular matrix (ECM) interaction. Secreted protein, acidic and rich in cysteine (SPARC) is an ECM protein with many biological functions that is overexpressed in cirrhotic livers and upregulated in activated hepatic stellate cells (aHSCs). We have recently shown that SPARC downregulation ameliorates liver fibrosis in vivo. To uncover the cellular mechanisms involved, we have specifically knocked down SPARC in two aHSC lines [the CFSC-2G (rat) and the LX-2 (human)] and in primary cultured rat aHSCs. Transient downregulation of SPARC in hepatic stellate cells (HSCs) did not affect their proliferation and had only minor effects on apoptosis. However, SPARC knockdown increased HSC adhesion to fibronectin and significantly decreased their migration toward PDFG-BB and TGF-β(1). Interestingly, TGF-β(1) secretion by HSCs was reduced following SPARC small interfering RNA (siRNA) treatment, and preincubation with TGF-β(1) restored the migratory capacity of SPARC siRNA-treated cells through mechanisms partially independent from TGF-β(1)-mediated induction of SPARC expression; thus SPARC knockdown seems to exert its effects on HSCs partially through modulation of TGF-β(1) expression levels. Importantly, collagen-I mRNA expression was reduced in SPARC siRNA-transfected HSCs. Consistent with previous results, SPARC knockdown in aHSCs was associated with altered F-actin expression patterns and deregulation of key ECM and cell adhesion molecules, i.e., downregulation of N-cadherin and upregulation of E-cadherin. Our data together suggest that the upregulation of SPARC previously reported for aHSCs partially mediates profibrogenic activities of TGF-β(1) and PDGF-BB and identify SPARC as a potential therapeutic target for liver fibrosis.  相似文献   

11.
12.

Liver fibrosis, with the characterization of progressive accumulation of extracellular matrix (ECM), is the common pathologic feature in the process of chronic liver disease. Hepatic stellate cells (HSCs) which are activated and differentiate into proliferative and contractile myofibroblasts are recognized as the main drivers of fibrosis. Obesity-related adipocytokine dysregulation is known to accelerate liver fibrosis progression, but the direct fibrogenic effect of mature adipocytes on HSCs has been rarely reported. Therefore, the purpose of this study was to explore the fibrogenic effect of adipocyte 3T3-L1 cells on hepatic stellate LX-2 cells. The results showed that incubating LX-2 cells with the supernatant of 3T3-L1 adipocytes triggered the expression of ECM related proteins, such as α-smooth muscle actin (α-SMA), type I collagen (CO-I), and activated TGF β/Smad2/3 signaling pathway in LX-2 cells. In addition, 3T3-L1 cells inhibited insulin sensitivity, activated endoplasmic reticulum stress and autophagy to promote the development of fibrosis. These results supported the notion that mature adipocytes can directly activate hepatic stellate cells, and the establishment of an in vitro model of adipocytes on HSCs provides an insight into screening of drugs for liver diseases, such as nonalcoholic fatty liver disease.

  相似文献   

13.
14.
Using the differential PCR display method to select cDNA fragments that are differentially expressed after hepatic stellate cell (HSC) activation, we have isolated from activated HSCs a cDNA that corresponds to rat alphaB-crystallin. Northern blots confirmed expression of alphaB-crystallin in culture-activated HSCs but not in quiescent HSCs. Western blot analysis and immunocytochemical staining confirmed expression of alphaB-crystallin protein in activated but not quiescent HSCs. alphaB-crystallin is induced as early as 6 h after plating HSCs on plastic and continues to be expressed for 14 days in culture. Expression of alphaB-crystallin was also induced in vivo in activated HSCs from experimental cholestatic liver fibrosis. Confocal microscopy demonstrated a cytoplasmic distribution of alphaB-crystallin in a cytoskeletal pattern. Heat shock treatment resulted in an immediate perinuclear redistribution that in time returned to a normal cytoskeletal distribution. The expression pattern of alphaB-crystallin was similar to that of HSP25, another small heat shock protein, but differed from the classic heat shock protein HSP70. Therefore, alphaB-crystallin represents an early marker for HSC activation.  相似文献   

15.
BACKGROUND/AIMS: Transforming growth factor beta (TGFbeta1) is considered the key mediator in the process of liver fibrosis. The purpose of this investigation was to evaluate the activity of ribozymes against TGFbeta1 in a cell-free system and activated hepatic stellate cells (HSCs), and antifibrotic effect in activated HSCs in vitro and in rats. METHODS: Three ribozymes targeting against TGFbeta1 mRNA were designed, and then cloned into the U1 snRNA expression cassette. The chimeric ribozymes were selected for the analysis of their performances in activated HSCs through the detection of their cleavage activities in a cell-free system. After ribozyme-encoding plasmids had been transfected into HSC-T6 cells, the effects of ribozymes on activated HSCs were evaluated through the analysis of proliferation, activation and collagen deposition of HSC-T6. The adenoviral vector expressing the ribozymes was constructed, and then delivered into rat models of hepatic fibrosis induced by carbon tetrachloride. RESULTS: TGFbeta1 expression was efficiently down-regulated in activated HSCs by U1 snRNA chimeric ribozymes which possessed perfect cleavage activity in a cell-free system. Further studies demonstrated that U1 snRNA chimeric ribozymes inhibited the synthesis of collagen I, reduced deposition of collagen I, suppressed BrdU incorporation, but had no effect on desmin and alpha-SMA expression in transfected HSC-T6 cells. Histological analysis demonstrated that the adenoviral vector expressing ribozyme (Rz803) could alleviate fibrotic pathology in rats treated with carbon tetrachloride. CONCLUSIONS: The anti-TGFbeta1 ribozymes could reverse the character of activated HSCs in vitro and improve fibrotic pathology in vivo. It indicated that TGFbeta1 could be considered as a novel candidate for a therapeutic agent against hepatic fibrosis.  相似文献   

16.
Smads are intracellular signaling molecules of the transforming growth factor-beta (TGF-beta) superfamily that play an important role in the activation of hepatic stellate cells (HSCs) and hepatic fibrosis. Excepting the regulation of Smad7, receptor-regulated Smad gene expression is still unclear. We employed rat HSCs to investigate the expression and regulation of the Smad1 gene, which is a bone morphogenetic protein (BMP) receptor-regulated Smad. We found that the expression and phosphorylation of Smad1 are increased during the activation of HSCs. Moreover, TGF-beta significantly inhibits Smad1 gene expression in HSCs in a time- and dose-dependent manner. Furthermore, although both TGF-beta1 and BMP2 stimulate the activation of HSCs, they have different effects on HSC proliferation. In conclusion, Smad1 expression and phosphorylation are increased during the activation of HSCs and TGF-beta1 significantly inhibits the expression of the Smad1 gene.  相似文献   

17.
Hepatic stellate cells (HSCs) activation is a key step that promotes hepatic fibrosis. Emerging evidence suggests that aerobic glycolysis is one of its important metabolic characteristics. Our previous study has reported that CD147, a glycosylated transmembrane protein, contributes significantly to the activation of HSCs. However, whether and how it is involved in the aerobic glycolysis of HSCs activation is unknown. The objective of the present study was to validate the effect of CD147 in HSCs activation and the underlying molecular mechanism. Our results showed that the silencing of CD147 decreased the expression of α-smooth muscle-actin (α-SMA) and collagen I at both mRNA and protein levels. Furthermore, CD147 silencing decreased the glucose uptake, lactate production in HSCs, and repressed the lactate dehydrogenase (LDH) activity, the expression of hexokinase 2 (HK2), glucose transporter 1 (Glut1). The effect of galloflavin, a well-defined glycolysis inhibitor, was similar to CD147 siRNA. Mechanistically, CD147 silencing suppressed glycolysis-associated HSCs activation through inhibiting the hedgehog signaling. Moreover, the hedgehog signaling agonist SAG could rescue the above effect of CD147 silencing. In conclusion, CD147 silencing blockade of aerobic glycolysis via suppression of hedgehog signaling inhibited HSCs activation, suggesting CD147 as a novel therapeutic target for hepatic fibrosis.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10616-021-00460-9.  相似文献   

18.
Hepatic stellate cells (HSCs) are important part of the local 'stem cell niche' for hepatic progenitor cells (HPCs) and hepatocytes. However, it is unclear as to whether the products of activated HSCs are required to attenuate hepatocyte injury, enhance liver regeneration, or both. In this study, we performed 'loss of function' studies by depleting activated HSCs with gliotoxin. It was demonstrated that a significantly severe liver damage and declined survival rate were correlated with depletion of activated HSCs. Furthermore, diminishing HSC activation resulted in a 3-fold increase in hepatocyte apoptosis and a 66% decrease in the number of proliferating hepatocytes. This was accompanied by a dramatic decrease in the expression levels of five genes known to be up-regulated during hepatocyte replication. In particular, it was found that depletion of activated HSCs inhibited oval cell reaction that was confirmed by decreased numbers of Pank-positive cells around the portal tracts and lowered gene expression level of cytokeratin 19 (CK19) in gliotoxin-treated liver. These data provide clear evidence that the activated HSCs are involved in both hepatocyte death and proliferation of hepatocytes and HPCs in acetaminophen (APAP)-induced acute liver injury.  相似文献   

19.
During the initiation of an immune response, antigen-presenting cells employ MHC class II antigens as key molecules to present small peptides to CD4-positive lymphocytes. The invariant chain (Ii; CD74) plays a critical role in this process by influencing the expression and peptide loading of the MHC class II molecules. Therefore, coordinate expression of these molecules is believed to play an important role in antigen presentation. This study explores the expression of these molecules in fetal tissues. Formalin-fixed, paraffin-embedded multi-organ tissue blocks from aborted fetuses (age range 7-22 weeks) were immunostained for Ii/CD74 and MHC class II antigens using commercially available monoclonal antibodies for Ii/CD74 (LN2) and MHC class II antigens (LN3), respectively. Coordinate staining for Ii/CD74 and MHC class II antigens was seen in the skin, proximal renal tubules, tips of small intestinal mucosa, and cells of the reticuloendothelial system, including the spleen and thymus. Expression of Ii/CD74, but not of MHC class II antigens, was seen in pulmonary alveolar epithelium in all cases and in testicular Leydig cells (11 of 11 testes examined). The distribution and intensity of staining did not change significantly with age. In conclusion, this study describes distribution of Ii/CD74 and MHC class II antigens in human fetal tissues. Coordinate expression of Ii/CD74 and MHC class II antigens was identified in most fetal tissues, but there were also notable exceptions. In all cases this took the form of expression of Ii/CD74 in the absence of MHC class II expression. Discordance was particularly striking in pulmonary alveolar epithelium and testicular Leydig cells. This suggests that the Ii/CD74 molecule has functional roles in addition to its role in antigen presentation.  相似文献   

20.
《Phytomedicine》2014,21(3):254-260
Hepatic stellate cells (HSCs) are the major cell type involved in the production of extracellular matrix in liver. After liver injury, HSCs undergo transdifferentiation process from quiescent state to activated state, which plays an important role in liver fibrosis. Previous studies have shown that thymoquinone (TQ) might have protective effect against liver fibrosis in animal models; however, the underlying mechanism of action is not fully understood. The aim of this study is to examine whether TQ has any direct effect on HSCs. Our results showed that pretreatment of mice with TQ has protective effect against CCl4-induced liver injury compared to control group (untreated), which is consistent with previous studies. Moreover, our in vivo study showed that COL1A1 and α-SMA mRNA levels were significantly downregulated by TQ treatment. Similarly, in vitro study confirmed that TQ downregulated COL1A1, COL3A1 and α-SMA mRNA levels in activated rat HSCs and LX2 cells, an immortalized human hepatic stellate cell line. Pretreatment with TQ also inhibited the LPS-induced proinflammatory response in LX2 cells as demonstrated by reduced mRNA expression of IL-6 and MCP-1. Mechanistically, inactivation of NF-κB pathway is likely to play a role in the TQ-mediated inhibition of proinflammatory response in HSCs. Finally, we have shown that TQ inhibited the culture-triggered transdifferentiation of freshly isolated rat HSCs as shown by significant downregulation of mRNA expression of several fibrosis-related genes. In conclusion, our study suggests that TQ has a direct effect on HSCs, which may contribute to its overall antifibrotic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号