首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
TRPC channels are a group of Ca2+-permeable nonselective cation channels that mediate store-operated and/or agonist-stimulated Ca2+ influx in a variety of cell types. In this study, we extensively examined the expression patterns of TRPC homologs in human vascular tissues. RT-PCR amplified cDNA fragments of TRPC1 (505 bp), TRPC3 (372 bp), TRPC4 (499 bp), TRPC5 (325 bp), TRPC6 (509 bp), and TRPC7 (187 bp) from RNA isolated from cultured human coronary artery endothelial cells. In situ hybridization yielded strong labeling of TRPC1,3–6 in the endothelial and smooth muscle cells of human coronary and cerebral arteries. TRPC7 labeling was exclusively found in endothelial cells but not in smooth muscle cells. Results from immunohistochemical staining were consistent with those from in situ hybridization. Similar expression patterns of TRPC homologs were also observed in arterioles and vaso vasora. In conclusion, our study indicates that TRPC homologs are widely expressed in human vessels of all calibers, including medium-sized coronary arteries and cerebral arteries, smaller-sized resistance arteries, and vaso vasora. These results suggest a ubiquitous role of TRPC homologs in regulating blood supply to different regions and in controlling arterial blood pressure.  相似文献   

2.
Urotensin II, through its interaction with its UT receptor, is a potent vasoactive peptide in humans and in several animal models. Recent studies have demonstrated elevated plasma U-II levels in patients with atherosclerosis and coronary artery disease. U-II is expressed in endothelial cells, smooth muscle cells and infiltrating macrophages of atherosclerotic human coronary arteries. UT receptor expression is up-regulated by inflammatory stimuli. Activation of UT receptor by U-II stimulates endothelial and smooth muscle cell proliferation and monocytes chemotaxis. Therefore, in addition to its primary vasoactive effect, these observations suggest a role of U-II and UT receptor in the initiation and/or progression of atherosclerosis.  相似文献   

3.
The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.  相似文献   

4.
The alpha adrenoceptors on endothelial cells   总被引:4,自引:0,他引:4  
Endothelial cells release a powerful factor (endothelium-derived relaxing factor [EDRF]) that relaxes smooth muscle cells in response to some vasodilating agents such as acetylcholine. Contraction curves to norepinephrine (NE) in greyhound, mongrel dog, and pig coronary artery rings were studied in vitro in the presence of propranolol. Removal of endothelium increased the sensitivity and maximum contraction in response to NE. In other experiments pig coronary rings were precontracted with a thromboxane mimetic U 46619 in the presence of propranolol. NE relaxed these arteries only if endothelium was present. Methoxamine was without effect but the relaxation response to NE was antagonized by phentolamine, idazoxan, and yohimbine, which suggests that there are alpha 2 adrenoceptors on endothelial cells that mediate the release of EDRF. Greyhound and mongrel dog large coronary arteries relaxed to NE only if prazosin was present, which suggests that alpha 1-adrenoceptor stimulation on the vascular smooth muscle can override the relaxation response to EDRF. Comparison of NE responses in carotid, mesenteric, renal, and femoral large arteries of the pig, greyhound, and mongrel dog indicate the nonuniformity of distribution of alpha 2 adrenoceptors on endothelium and alpha 1 and alpha 2 adrenoceptors on vascular smooth muscle. The integrity of the endothelium must now be considered in interpreting the vascular responses to alpha-adrenoceptor agonists.  相似文献   

5.
We tested the hypothesis that the cytosolic free calcium concentration in endothelial cells is under the influence of the smooth muscle cells in the coronary circulation. In the left descending branch of porcine coronary arteries, cytosolic free calcium concentration ([Ca(2+)](i)) was estimated by determining the fluorescence ratio of two calcium probes, fluo 4 and fura red, in smooth muscle and endothelial cells using confocal microscopy. Acetylcholine and potassium, which act directly on smooth muscle cells to increase [Ca(2+)](i), were found to indirectly elevate [Ca(2+)](i) in endothelial cells; in primary cultures of endothelial cells, neither stimulus affected [Ca(2+)](i), yet substance P increased the fluorescence ratio twofold. In response to acetylcholine and potassium, isometric tension developed by arterial strips with intact endothelium was attenuated by up to 22% (P < 0.05) compared with strips without endothelium. These findings suggest that stimuli that increase smooth muscle [Ca(2+)](i) can indirectly influence endothelial cell function in porcine coronary arteries. Such a pathway for negative feedback can moderate vasoconstriction and diminish the potential for vasospasm in the coronary circulation.  相似文献   

6.
Homocysteine, cytokines (IL-18, IL-6, IL-8) are involved in vascular inflammation and coronary artery disease. Homocysteine influences endothelial IL-6 and IL-8 cytokine expression and release, however, an association between homocysteine and IL-18 has not been previously investigated in endothelial/smooth muscle cells and or in coronary artery disease. We report in 9 coronary artery bypass surgery (CABG) patients a positive correlation r = 0.86 between homocysteine and IL-18 plasma levels (p < 0.05). Plasma IL-18 levels are significantly higher in those patients with elevated homocysteine compared to those with normal levels (p < 0.02; 153 +/- 19 pg/ml versus 116 +/- 14 pg/ml respectively). Our in vitro cell culture studies suggest that the source of IL-18 in CABG patients with elevated homocysteine is not from vascular smooth muscle or endothelial cells.  相似文献   

7.
The aim of this study was to determine whether similar populations of smooth muscle cells, in relation to contractile and cytoskeletal proteins, are present in normal and diseased human coronary arteries and normal and injured rat and rabbit arteries. Rat aortae and rabbit carotid arteries were de-endothelialised and the resulting neointimal thickening examined at set time points 2-24 weeks later. Immunohistochemistry revealed that arteries had three distinct populations of cells in respect to alpha-smooth muscle actin, smooth muscle myosin heavy chain and vimentin (staining intensities '-', '+' or '++' for each protein), but only two populations in respect to desmin ('-' and '+'). The different populations of cells were found in the neointima at all times after injury, in human atherosclerotic plaque and in the media of diseased, injured and uninjured vessels, although in different proportions. It was concluded that arteries of the human, rat and rabbit have cells with a wide spectrum of contractile and cytoskeletal proteins. Expression of the different proteins did not reflect the state of the artery after injury or during the disease process, and was not associated with the expansion of a subset of cells within the artery wall.  相似文献   

8.
This is the first report on the ultrastructural distribution of nitric oxide synthase and endothelin immunoreactivities in the coronary and pulmonary arteries of newborn Wistar rats. The distribution of nitric oxide synthase and endothelin was investigated using pre-embedding peroxidase-antiperoxidase immunocytochemistry. In both arteries examined, positive labelling for nitric oxide synthase was localized both in the endothelium and smooth muscle, whereas positive labelling for endothelin was localized in the endothelium exclusively. In the coronary artery, approximately 80% and 55% of the endothelial cells examined were positive for nitric oxide synthase and endothelin, respectively, whereas in the pulmonary artery, 77% and 60% of the endothelial cells were positive for nitric oxide synthase and endothelin, respectively. These findings indicate that nitric oxide synthase and endothelin are colocalized in some of the endothelial cells of the newborn rat. In the endothelium, nitric oxide synthase and endothelin immunoreactivities were distributed throughout the cell cytoplasm and in association with the membranes of intracellular organelles. In smooth muscle, a relationship of nitric oxide synthase immunoreactivity to endoplasmic reticulum was observed in the pulmonary artery. In summary, in the newborn rat, endothelial cells of the coronary and pulmonary artery are rich in nitric oxide synthase (neuronal isoform) and endothelin, and it is suggested therefore that they may be substantially involved in vasomotor control of the cardiac and pulmonary circulation during early stages of postnatal development.  相似文献   

9.
We examined the effects of peroxynitrite pre-treatment on sarco/endoplasmic reticulum Ca(2+) (SERCA) pump in pig coronary artery smooth muscle and endothelium. In saponin-permeabilized cells, smooth muscle showed much greater rates of the SERCA Ca(2+) pump-dependent (45)Ca(2+) uptake/mg protein than did the endothelial cells. Peroxynitrite treatment of cells inhibited the SERCA pump more severely in smooth muscle cells than in endothelial cells. To determine implications of this observation, we next examined the effect of the SERCA pump inhibitor cyclopiazonic acid (CPA) on intracellular Ca(2+) concentration of intact cultured cells. CPA produced cytosolic Ca(2+) transients in cultured endothelial and smooth muscle cells. Pre-treatment with peroxynitrite (200 microM) inhibited the Ca(2+) transients in the smooth muscle but not in the endothelial cells. CPA contracts de-endothelialized artery rings and relaxes precontracted arteries with intact endothelium. Peroxynitrite (250 microM) pre-treatment inhibited contraction in the de-endothelialized artery rings, but not the endothelium-dependent relaxation. Thus, endothelial cells appear to be more resistant than smooth muscle to the effects of peroxynitrite at the levels of SERCA pump activity, CPA-induced Ca(2+) transients in cultured cells, and the effects of CPA on contractility. The greater resistance of endothelium to peroxynitrite may play a protective role in pathological conditions such as ischemia-reperfusion when excess free radicals are produced.  相似文献   

10.
This work aimed to establish the lineage of cells similar to the interstitial cells of Cajal (ICC), the arterial ICC-like (AIL) cells, which have recently been described in resistance arteries, and to study their location in the artery wall. Segments of guinea-pig mesenteric arteries and single AIL cells freshly isolated from them were used. Confocal imaging of immunostained cells or segments and electron microscopy of artery segments were used to test for the presence and cellular localization of selected markers, and to localize AIL cells in intact artery segments. AIL cells were negative for PGP9.5, a neural marker, and for von Willebrand factor (vWF), an endothelial cell marker. They were positive for smooth muscle alpha-actin and smooth muscle myosin heavy chain (SM-MHC), but expressed only a small amount of smoothelin, a marker of contractile smooth muscle cells (SMC), and of myosin light chain kinase (MLCK), a critical enzyme in the regulation of smooth muscle contraction. Cell isolation in the presence of latrunculin B, an actin polymerization inhibitor, did not cause the disappearance of AIL cells from cell suspension. The fluorescence of basal lamina protein collagen IV was comparable between the AIL cells and the vascular SMCs and the fluorescence of laminin was higher in AIL cells compared to vascular SMCs. Moreover, cells with thin processes were found in the tunica media of small resistance arteries using transmission electron microscopy. The results suggest that AIL cells are immature or phenotypically modulated vascular SMCs constitutively present in resistance arteries.  相似文献   

11.
The goal of the present study was to develop a competitive PCR assay to measure changes in the expression of endothelial nitric oxide synthase (eNOS) mRNA levels throughout the canine vascular tree. A partial sequence of canine eNOS cDNA (1.86 kb), inducible NOS (1.95 kb), and neuronal NOS (1.16 kb) was cultured from canine aortic endothelial cells, LPS-treated canine splenic vein endothelial cells, and from canine left ventricle, respectively. Competitor eNOS cDNA (eNOS-C) was constructed via recombinant PCR. Thus, with the use of a standard curve competitive PCR with eNOS-C, the amount of eNOS mRNA in 500 ng of total RNA was greatest in the circumflex > right coronary artery > left anterior descending coronary artery > aorta. The isolation of coronary microvessels from the left ventricle was associated with an enrichment of endothelial cell markers such as eNOS, von Willebrand factor, and caveolin-1, an observation supported by the detection of up to 15-fold higher levels of eNOS mRNA in coronary microvessels relative to the larger arteries. The ability to quantify changes in eNOS mRNA levels throughout the canine vasculature should provide greater insight into the molecular mechanisms of how this gene is regulated in physiological and pathophysiological states.  相似文献   

12.
Hassan GS  Douglas SA  Ohlstein EH  Giaid A 《Peptides》2005,26(12):2464-2472
The vasoactive peptide urotensin-II (U-II) is best known for its ability to regulate peripheral vascular and cardiac contractile function in vivo, and recent in vitro studies have suggested a role for the peptide in the control of vascular remodeling by inducing smooth muscle proliferation and fibroblast-mediated collagen deposition. Therefore, U-II may play a role in the etiology of atherosclerosis. In the present study we sought to determine the expression of U-II in coronary arteries from patients with coronary atherosclerosis and from normal control subjects, using immunohistochemistry and in situ hybridization. In normal coronary arteries, there was little expression of U-II in all types of cells. In contrast, in patients with coronary atherosclerosis, endothelial expression of U-II was significantly increased in all diseased segments (P < 0.05). Greater expression of U-II was noted in endothelial cells of lesions with subendothelial inflammation or fibrofatty lesion compared with that of endothelial cells underlined by dense fibrosis or minimal intimal thickening. Myointimal cells and foam cells also expressed U-II. In most diseased segments, medial smooth muscle cells exhibited moderate expression of U-II. These findings demonstrate upregulation of U-II in endothelial, myointimal and medial smooth muscle cells of atherosclerotic human coronary arteries, and suggest a possible role for U-II in the pathogenesis of coronary atherosclerosis.  相似文献   

13.
Although smooth muscle and endothelial cells in pig coronary artery are morphologically and functionally distinct, ascorbate uptake has been characterized only in smooth muscle cells. Ascorbate transporters in kidney and intestinal epithelial cells differ from those in smooth muscle. We examined ascorbate transport and mRNA expression of sodium-dependent vitamin C transporters (SVCT) by RT-PCR in the pig coronary artery endothelial cell cultures. When 14C-ascorbate uptake in endothelial cells was examined as 14C or by HPLC, the two values did not differ from each other. 14C-ascorbate uptake was Na+-dependent, stereoselective for l-ascorbate and inhibited by sulfinpyrazone. The kinetic characteristics of the uptake were: Km = 27± 3 M (Hill coefficient = 1) for ascorbate and Km = 73± 14 mM (Hill coefficient = 2) for Na+. Surprisingly, endothelial cells had similar kinetic parameters as smooth muscle cells, except for a slightly lower uptake velocity in endothelial cells. Comparison with the smooth muscle showed that both tissue types expressed mRNA for SVCT2. Endothelial cells differ from epithelial cells which express mainly SVCT1 but resemble smooth muscle cells in this respect. (Mol Cell Biochem 271: 43–49, 2005)  相似文献   

14.
Tenascin C (TNC) is an extracellular glycoprotein that is thought to be involved in tissue remodeling during organogenesis and regeneration. Using avian embryonic hearts, we investigated the spatiotemporal expression patterns of TNC during the formation of the proximal coronary artery. Immunohistochemistry showed that TNC was deposited around the developing coronary stem and that TNC colocalized with vascular smooth muscle α-actin. A quail-chick chimera, in which a quail proepicardial organ (PEO) had been transplanted, showed that quail tissue-derived cells contributed to the establishment of the endothelial and mural cells of the proximal coronary artery, and the quail tissue-derived mural cells displayed TNC. Proepicardial cells cultured in TNC showed the myofibroblast/smooth muscle cell phenotype and neutralizing anti-TNC antibody suppressed the expression of smooth muscle markers. These observations suggest that TNC plays a role in the mural smooth muscle development of the nascent proximal coronary artery.  相似文献   

15.
In the present study, the cryoprotective effect of dimethyl sulfoxide (Me2SO) and fetal calf serum (FCS) on coronary endothelium and endothelium-dependent relaxation (EDR) responses was studied in isolated canine coronary arteries following cryostorage at -75 degrees C. Compared to the freshly isolated coronary arteries, the EDR responses to acetylcholine, thrombin, and calcium ionophore were not significantly altered following 1 day storage at -75 degrees C in the presence of 1.8 M Me2SO and 20% FCS. Prolonged cold storage to 7 days, however, resulted in a slight, but significant, rightward shift of the concentration-response curves of acetylcholine and thrombin, but not calcium ionophore. The maximum relaxant response after 7-day cryostorage was 80 to 85% of fresh controls. Omission of FCS from the cryostorage incubation medium further accentuated the loss of EDR responses to all three endothelium-dependent vasodilators tested. Scanning electron microscopic examinations of the intimal surface of the Me2SO and FCS cryostored canine coronary arteries confirmed the preservation of intimal endothelial cells following 1 or 7 days of storage at -75 degrees C, while significant patches of loss of endothelial cells were observed in the arteries cryostored only in the presence of Me2SO. No significant inhibitory effect of cryostorage was observed for the direct, endothelium-independent relaxation induced by isoproterenol, regardless of the presence or absence of FCS. These results demonstrate that slow freezing of canine coronary arteries to -75 degrees C in Krebs-Henseleit solution containing Me2SO and FCS provides good preservation of the vascular smooth muscle function and endothelium-dependent vasodilatory responses.  相似文献   

16.
Urotensin-II and cardiovascular remodeling   总被引:2,自引:0,他引:2  
Urotensin-II (U-II), a cyclic undecapeptide, and its receptor, UT, have been linked to vascular and cardiac remodeling. In patients with coronary artery disease (CAD), it has been shown that U-II plasma levels are significantly greater than in normal patients and the severity of the disease is increased proportionally to the U-II plasma levels. We showed that U-II protein and mRNA levels were significantly elevated in the arteries of patients with coronary atherosclerosis in comparison to healthy arteries. We observed U-II expression in endothelial cells, foam cells, and myointimal and medial vSMCs of atherosclerotic human coronary arteries. Recent studies have demonstrated that U-II acts in synergy with mildly oxidized LDL inducing vascular smooth muscle cell (vSMC) proliferation. Additionally, U-II has been shown to induce cardiac fibrosis and cardiomyocyte hypertrophy leading to cardiac remodeling. When using a selective U-II antagonist, SB-611812, we demonstrated a decrease in cardiac dysfunction including a reduction in cardiomyocyte hypertrophy and cardiac fibrosis. These findings suggest that U-II is undoubtedly a potential therapeutic target in treating cardiovascular remodeling.  相似文献   

17.
Coronary arteries bring blood flow to the heart muscle. Understanding the developmental program of the coronary arteries provides insights into the treatment of coronary artery diseases. Multiple sources have been described as contributing to coronary arteries including the proepicardium, sinus venosus (SV), and endocardium. However, the developmental origins of coronary vessels are still under intense study. We have produced a new genetic tool for studying coronary development, an AplnCreER mouse line, which expresses an inducible Cre recombinase specifically in developing coronary vessels. Quantitative analysis of coronary development and timed induction of AplnCreER fate tracing showed that the progenies of subepicardial endothelial cells (ECs) both invade the compact myocardium to form coronary arteries and remain on the surface to produce veins. We found that these subepicardial ECs are the major sources of intramyocardial coronary vessels in the developing heart. In vitro explant assays indicate that the majority of these subepicardial ECs arise from endocardium of the SV and atrium, but not from ventricular endocardium. Clonal analysis of Apln-positive cells indicates that a single subepicardial EC contributes equally to both coronary arteries and veins. Collectively, these data suggested that subepicardial ECs are the major source of intramyocardial coronary arteries in the ventricle wall, and that coronary arteries and veins have a common origin in the developing heart.  相似文献   

18.
Hypertension is associated with an increase in coronary artery disease, but little is known about the regulation of coronary vascular tone by endothelin-1 (ET-1) in hypertension. The present study evaluated the mechanisms mediating altered contraction to ET-1 in coronary small arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. DOCA-salt rats exhibited an increase in systolic blood pressure and plasma ET-1 levels compared with placebo rats. Contraction to ET-1 (1 x 10(-11) to 3 x 10(-8) M), measured in isolated coronary small arteries maintained at a constant intraluminal pressure of 40 mmHg, was largely reduced in vessels from DOCA-salt rats compared with placebo rats. To determine the role of endothelin receptor binding in the impaired contraction to ET-1, (125)I-labeled ET-1 receptor binding was measured in membranes isolated from coronary small arteries. Maximum binding (fmol/mg protein) and binding affinity were similar in coronary membranes from DOCA-salt rats compared with placebo rats. Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in freshly dissociated coronary small artery smooth muscle cells loaded with fura 2. ET-1 (10(-9) M) produced a 30 +/- 9% increase in [Ca(2+)](i) in smooth muscle cells from placebo rats, but had no effect on cells from DOCA-salt rats (2 +/- 2%). In summary, the ET-1-induced coronary artery contraction and increase in [Ca(2+)](i) are impaired in DOCA-salt hypertensive rats, whereas endothelin receptor binding is not altered. These results suggest endothelin receptor uncoupling from signaling mechanisms and indicate that impaired [Ca(2+)](i) signaling contributes to the decrease in ET-1-induced contraction of coronary small arteries in DOCA-salt hypertensive rats.  相似文献   

19.
Progress in the treatment of human in-stent restenosis (ISR) is hampered by an imprecise understanding of the nature of the cells that occlude vascular stents. Recent studies suggest that circulating vascular progenitor cells may mediate vascular repair and lesion formation. Moreover, functional endothelial progenitor cells appear to play a protective role in attenuating vascular lesion formation. Hence, we sought to answer two important questions: 1). Are primitive cells found in ISR lesions? 2). Is the abundance of cultured angiogenic cells (CACs) in patients with ISR different from that in patients with non-ISR lesions or normal controls? Human coronary atherectomy tissue from 13 ISR, 6 postangioplasty restenosis (RS), and 14 primary (PR) atherosclerotic lesions, as well as 15 postmortem coronary artery cross sections from young individuals without atherosclerosis, were studied. All 13 ISR and 4 of 6 RS tissue specimens contained cells that immunolabeled for the primitive cell marker c-kit and smooth muscle alpha-actin, whereas the intima and media of PR lesions and normal arteries were devoid of c-kit-immunopositive cells. The abundance of peripheral blood mononuclear cell-derived CACs was assessed in 10 patients with ISR, 6 patients with angiographically verified patent stents, and 6 individuals with no clinical evidence of coronary artery disease. CACs were less abundant in ISR patients than in non-ISR controls (13.9 +/- 3.1 vs. 22.3 +/- 6.7 cells/high-power field, P < 0.05), and both of these groups had fewer CACs than non-coronary artery disease patients (37.6 +/- 3.8, P < 0.05). These findings suggest a unique pathogenesis for ISR and RS lesions that involves c-kit-immunopositive smooth muscle cells. Moreover, the paucity of CACs in patients with ISR may contribute to the pathogenesis of ISR, perhaps because of attenuated reendothelialization.  相似文献   

20.
This study was carried out to determine whether sympathectomy influences the phenotypic modulation of smooth muscle cells in the peripheral and cerebral arteries of heritable hyperlipidaemic rabbits. Unilateral superior cervical ganglionectomy (common origin of innervation to the middle cerebral artery and the central ear artery) was performed on four Watanabe heritable hyperlipidaemic rabbits. Cross-sections of the ipsi- (sympathectomized) and the contralateral (intact) cerebral and ear arteries were prepared 2 months later and labelled with monoclonal antibodies against vimentin and desmin, two markers of the differentiation of smooth muscle cells, and α-smooth muscle actin, a marker of these cells. Sections from control and sympathectomized arteries were analysed with a confocal laser scanning microscope. Compared with contralateral intact ear arteries, the sympathectomized ear artery developed a thickened intima with dedifferentiated smooth muscle cells, expressing α-smooth muscle actin but no desmin, whereas the middle cerebral artery remained unchanged. These results suggest that sympathectomy may favour the progression of atherosclerosis in peripheral but not in cerebral arteries of Watanabe heritable hyperlipidaemic rabbits  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号