首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca(2+) or Mg(2+) ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 degrees C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent K(m) = 6.5 mol %) and saturation kinetics with respect to CTP (apparent K(m) = 0.3 mm). dCTP was both a substrate (apparent K(m) = 0.4 mm) and competitive inhibitor (apparent K(i) = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases.  相似文献   

2.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

3.
1. The kinetics of inhibition of calf-intestinal alkaline phosphatase by inorganic phosphate, fluorophosphate, inorganic pyrophosphate, beta-glycerophosphate and adenosine 5'-triphosphate in the range pH8-10 were investigated. The reference substrate was 4-methylumbelliferyl phosphate. 2. The inhibitions were ;mixed' in that both K(m) and V were affected, but the competitive element was by far the stronger. 3. In each case the pH profile for the competitive K(i) was similar to the pH profile for K(m). Since the K(m) and K(i) values both change 100-fold over the pH range 8-10, it is concluded that the inhibitors compete with the substrate for the same active site. 4. It was also found that the enzyme preparation hydrolysed fluorophosphate, pyrophosphate and adenosine 5'-triphosphate as readily as it hydrolysed 4-methylumbelliferyl phosphate and beta-glycerophosphate. Each pH-activity curve, however, had a different shape, but with the exception of pyrophosphate the activity approached the same maximum value at high pH. 5. Attempts to separate the phosphomonoesterase and pyrophosphatase activities by column chromatography were not successful, and the results of other experiments listed suggest that the two activities are a property of the same enzyme. 6. The effect of Mg(2+) ions is briefly mentioned: the phosphomonoesterase activity is enhanced whereas the pyrophosphatase and adenosine triphosphatase activities are strongly inhibited in the presence of excess of Mg(2+) ions.  相似文献   

4.
The membrane adenosine triphosphatase (E.C. 3.6.1.3) from Escherichia coli has been solubilized with Triton X-100 and purified to near homogeneity. The purified enzyme has a sedimentation coefficient of 12.9S in a sucrose gradient, corresponding to a molecular weight of about 360,000. On electrophoresis in gels containing sodium dodecyl sulfate, it dissociates into subunits with apparent molecular weights of 60,000, 56,000, 35,000, and 13,000. The purified enzyme loses activity and breaks down into subunits when stored in the cold. Guanosine 5'-triphosphate and inosine 5'-triphosphate are alternative substrates. Ca(2+) and, to a small extent, Co(2+) or Ni(2+) will substitute for Mg(2+) in the reaction. The K(m) for Mg-adenosine triphosphate of the membrane-bound enzyme is 0.23 mM, and for the pure enzyme it is 0.29 mM. Azide is a noncompetitive inhibitor of both the membrane-bound enzyme and the pure enzyme. P(i) is a noncompetitive inhibitor of the solubilized enzyme. An antibody to the purified enzyme was obtained from rabbits. The antibody inhibits the solubilized enzyme and virtually all of the adenosine triphosphate hydrolysis by membranes from cells grown aerobically or anaerobically. The antibody also inhibits the adenosine triphosphate-stimulated pyridine nucleotide transhydrogenase (E.C. 1.6.1.1) of the E. coli membrane.  相似文献   

5.
1. An enzyme (EC 2.8.2.1) that catalyses the transfer of sulphate from adenosine 3'-phosphate 5'-sulphatophosphate to phenols was purified approx. 2000-fold from male rat livers. 2. The purified preparation did not catalyse the sulphurylation of dehydroepiandrosterone, butan-1-ol, l-tyrosine methyl ester, 1-naphthylamine or serotonin. 3. At pH8.0 and 37 degrees C the K(m) values of the enzyme for p-nitrophenol and adenosine 3'-phosphate 5'-sulphatophosphate are 51 and 14mum respectively. The K(m) value for either substrate is independent of the concentration of the other. 4. The sulphurylation of phenol is inhibited by thiol compounds and glutathione at a concentration of 3mm caused an approx. 50% decrease in enzyme activity. 5. The K(m) of the enzyme for adenosine 3'-phosphate 5'-sulphatophosphate is unaffected by the presence of added glutathione but at a concentration of 5mm-glutathione the K(m) of the enzyme for its phenolic substrate is decreased.  相似文献   

6.
Acetate kinase (EC 2.7.2.1) was purified from Acholeplasma laidlawii cytoplasm by a combination of ammonium sulfate fractionation, gel filtration, diethylaminoethyl-cellulose chromatography, and affinity chromatography on 8-(6-aminohexylamino)-adenosine 5'-triphosphate conjugated to Sepharose 4B. The enzyme was composed of polypeptide chains of about 50,000 molecular weight as estimated from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Under nondenaturating conditions, apparent molecular weights between 64,000 and 130,000 were obtained, depending upon mainly the ionic strength of the test solution. The enzyme had a narrow specificity for phosphate acceptor acids, whereas both purine and pyrimidine nucleoside triphosphates were suitable phosphate donors. Na(+) and K(+) inhibited both acetyl phosphate and adenosine 5'-triphosphate synthesis, and the latter was also inhibited by high concentrations of adenosine 5'-diphosphate and acetyl phosphate. This substrate inhibition was partially abolished by 0.5 M NaCl. The enzyme catalyzed the independent adenosine 5'-diphosphate<-->adenosine 5'-triphosphate and acetate<-->acetyl phosphate exchanges. The rate of the latter was enhanced by the addition of cosubstrate Mg(2+)-adenosine 5'-triphosphate. The high affinity for substrates, except for acetate, indicated that under physiological conditions the direction of the enzymic reaction favors adenosine 5'-triphosphate synthesis. Thus, a mechanism for adenosine 5'-triphosphate generation in mycoplasmas is suggested.  相似文献   

7.
Isolated cell envelopes of a marine bacterium, M.B.3, have been prepared which possess a nonspecific, cation-activated nucleotidase. The cell envelope comprises approximately 35% (dry weight) of the whole cell and contains protein, 60.2%; lipids, 20.7%; hexose, 3.4%; and ribonucleic acid, 4.6%. No deoxyribonucleic acid could be detected in the preparations. The nucleotidase has an essential requirement for Mg(2+); maximum activation at pH 8.0 occurs at a divalent cation concentration of approximately 80 mm. At a Mg(2+) to adenosine 5'-triphosphate (ATP) ratio of 2:1, the enzyme was further stimulated by monovalent cations Na(+), K(+), NH(4) (+), and Li(+). Maximum activity was found at a monovalent ion concentration of approximately 0.3 m. The envelope preparation liberated inorganic orthophosphate (P(i)) from ATP, adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) at similar rates. Thin-layer and ion-exchange chromatography show that when AMP, ADP, and ATP were utilized as substrate, approximately 1, 2, and 3 moles of P(i), respectively, were produced per mole of adenosine. P(i) was also liberated from the 5'-triphosphates of guanosine, uridine, and cytidine. The enzyme preparation did not attack p-nitrophenyl phosphate, beta-glycerophosphate, or inorganic pyrophosphate. Sulfhydryl inhibitors p-chloromercuribenzoate, N-ethyl maleimide, and iodoacetate had little effect upon the nucleotidase activity. Ca(2+) and ethylenediaminetetraacetic acid caused complete inhibition of the system, whereas ouabain had no effect upon the enzyme activity. The concentrations of Na(+) (0.3 m) and Mg(2+) ions (60 to 80 mm) required for maximum ATP-hydrolyzing activity were similar to those concentrations necessary for maintenance of cell integrity and for the prevention of cell lysis.  相似文献   

8.
Properties of protein kinase C subspecies in human platelets   总被引:4,自引:0,他引:4  
Protein kinase C (PKC) from human platelets was resolved into two fractions by hydroxyapatite column chromatography. One of the enzymes was indistinguishable from the brain type III PKC having alpha-sequence in its kinetic and immunological properties. The other enzyme was kinetically different from any of the brain PKC subspecies so far isolated, although it resembled the brain type II PKC having beta-sequence. With H1 histone as substrate, this platelet enzyme was not very sensitive to Ca2+, and activated partly by phosphatidylserine plus diacylglycerol or by free arachidonic acid. Both platelet enzymes could phosphorylate the P47 protein in vitro, but the enzyme physiologically responsible for the P47 protein phosphorylation in the activated platelets remains to be identified.  相似文献   

9.
The glutamine synthetase from Bacillus licheniformis A5 was purified by using a combination of polyethylene glycol precipitation and chromatography on Bio-Gel A 1.5m. The resulting preparation was judged to be homogeneous by the criteria of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, equilibrium analytical ultracentrifugation, and electron microscopic analysis. The enzyme is a dodecamer with a molecular weight of approximately 616,000, and its subunit molecular weight is 51,000. Under optimal assay conditions (pH 6.6, 37 degrees C) apparent Km values for glutamate, ammonia, and manganese.adenosine 5'-triphosphate (1:1 ratio) were 3.6, 0.4, and 0.9 mM, respectively. Glutamine synthetase activity was inhibited approximately 50% by the addition of 5 mM glutamine, alanine, glycine, serine, alpha-ketoglutarate, carbamyl phosphate, adenosine 5'-diphosphate, or inosine 5'-triphosphate to the standard glutamine synthetase assay system, whereas 5 mM adenosine 5'-monophosphate or pyrophosphate caused approximately 90% inhibition of enzyme activity. Phosphorylribosyl pyrophosphate at 5 mM enhanced activity approximately 60%. We were unable to detect any physical or kinetic differences in the properties of the enzyme when it was purified from cells grown in the presence of ammonia or nitrate as sole nitrogen source. The data indicate that B. licheniformis A5 contains one species of glutamine synthetase whose catalytic activity is not regulated by a covalent modification system.  相似文献   

10.
Supernates of thymic epithelial cell culture (STEC) strongly inhibit aggregation induced by addition of adenosine diphosphate (ADP: 1 microM) or thrombin (0.5 unit per ml) to washed platelet suspensions and accelerated the restoration from ADP-triggered aggregation. At the same time, STEC increased the level of platelet adenosine 3',5'-cyclic monophosphate (cyclic AMP) in a dose-dependent manner. Depending on the concentration used, thymosin fraction 5 increased the level of intracellular cyclic AMP ranging between 5 and 100 micrograms per ml, as well as inhibiting ADP-induced platelet aggregation. The activities of both STEC and thymosin fraction 5 were found to act exclusively on cyclic AMP phosphodiesterase activity in platelets. In contrast the supernates from Chang, HeLa, or HCC-M cells did not affect platelet aggregation induced by ADP, but slightly increased the cyclic AMP level (Chang, HeLa). Within 2 min after the treatment with STEC, more than 50% of the maximum inhibitory activity on platelet aggregation and increases in intracellular cyclic AMP were observed. These activities disappeared following STEC treatment with pronase E. STEC activity was found predominantly in the 1,000-50,000-dalton fractions. These activities were not altered when STEC was treated by adenosine deaminase. The level of prostaglandin E (PGE) derivatives in STEC was about two times that found in the control culture medium. These data suggest that the biological activity of STEC in the platelets might be attributed to thymosinlike polypeptides and PGE1.  相似文献   

11.
Two temperature-sensitive mutants (lysS1 and lysS2) of the lysyl-transfer ribonucleic acid synthetase (l-lysine:tRNA ligase [adenosine 5'-monophosphate], EC 6.1.1.6) of Bacillus subtilis have been isolated. Although protein synthesis is inhibited in both mutants at the restrictive temperature (42 to 45 C), the mutants remain viable in a minimal medium. In comparison with the wild-type lysyl-tRNA synthetase, the l-lysine-dependent exchange of [(32)P]pyrophosphate with adenosine 5'-triphosphate (ATP) for both mutant enzymes is decreased. The lysS1 enzyme is completely defective in the ATP-dependent attachment of l-lysine to tRNA, whereas the lysS2 enzyme has 3- to 10-fold reduced levels of this activity. Temperature-resistant transformants have wild-type enzyme levels, whereas partial revertants to temperature resistance have varied levels of enzyme activity. The attachment and exchange activities of the lysS2 enzyme are more heat labile in vitro than the wild-type enzyme, as is the attachment activity of a partial revertant of the lysS1 mutant. The lysS1 and the lysS2 lysyl-tRNA synthetases have higher apparent K(m) values for lysine and ATP, in both the activation and the attachment reactions. The lysS2 enzyme has a V(max) for tRNA(lys) one-third that of the wild-type enzyme. Molecular weights of approximately 150,000 for the wild-type and lysS2 enzymes and approximately 76,000 for the lysS1 enzyme were estimated from sedimentation positions in sucrose density gradients assayed by the ATP-pyrophosphate exchange activity. We propose that the two mutations (lysS1 and lysS2) directly affect the sites for exchange activity, but indirectly alter attachment activity as a consequence of defective subunit association.  相似文献   

12.
We tested the effects of calmodulin, two types of calmodulin antagonists, and various phospholipids on the phospholipase A2 activities of intact platelets, platelet membranes, and partially purified enzyme preparations. Trifluoperazine, chlorpromazine (phenothiazines) and N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide (W-7), at concentrations which antagonize the effects of calmodulin, significantly inhibited thrombin- and Ca2+ ionophore-induced production of arachidonic acid metabolites by suspensions of rabbit platelets and Ca2+-induced arachidonic acid release from phospholipids of membrane fractions, but not phospholipase A2 activity in purified enzyme preparations. The addition of acidic phospholipids, but not calmodulin, stimulated phospholipase A2 activity in purified enzyme preparations while decreasing its Km for Ca2+. The dose-response and kinetics of inhibition by calmodulin antagonists of acidic phospholipid-activated phospholipase A2 activity in purified preparations were similar to those of Ca2+-induced arachidonic acid release from membrane fractions. Calmodulin antagonists were also found to inhibit Ca2+ binding to acidic phospholipids in a similar dose-dependent manner. Our results suggest that the platelet phospholipase A2 is the key enzyme involved in arachidonic acid mobilization in platelets and is regulated by acidic phospholipids in a Ca2+-dependent manner and that calmodulin antagonists inhibit phospholipase A2 activity via an action on acidic phospholipids.  相似文献   

13.
Diacylglycerol kinase (adenosine 5′-triphosphate:1,2-diacylglycerol 3-phosphotransferase, EC 2.7.1.107), purified from suspension cultured Catharanthus roseus cells (J Wissing, S Heim, KG Wagner [1989] Plant Physiol 90: 1546-1551), was further characterized and its subcellular location was investigated. The enzyme revealed a complex dependency on lipids and surfactants; its activity was stimulated by certain phospholipids, with phosphatidylinositol and phosphatidylglycerol as the most effective species, and by deoxycholate. In the presence of Triton X-100, used for its purification, a biphasic dependency upon diacylglycerol was observed and the apparent Michaelis constant values for diacylglycerol decreased with decreasing Triton concentration. The enzyme accepted both adenosine 5′-triphosphate and guanosine 5′-triphosphate as substrate and showed rather low apparent inhibition constant values for all nucleoside diphosphates tested. Diacylglycerol kinase is an intrinsic membrane protein and no activity was found in the cytosol. An investigation of different cellular membrane fractions confirmed its location in the plasma membrane.  相似文献   

14.
1. ATP sulphurylase was purified up to 1000-fold from spinach leaf tissue. Activity was measured by sulphate-dependent [(32)P]PP(i)-ATP exchange. The enzyme was separated from Mg(2+)-requiring alkaline pyrophosphatase (which interferes with the PP(i)-ATP-exchange assay) and from other PP(i)-ATP-exchange activities. No ADP sulphurylase activity was detected. 2. Sulphate was the only form of inorganic sulphur that catalysed PP(i)-ATP exchange; K(m) (sulphate) was 3.1mm, K(m) (ATP) was 0.35mm and the pH optimum was 7.5-9.0. The enzyme was insensitive to thiol-group reagents and required either Mg(2+) or Co(2+) for activity. 3. The enzyme catalysed [(32)P]PP(i)-dATP exchange; K(m) (dATP) was 0.84mm and V (dATP) was 30% of V (ATP). Competition between ATP and dATP was demonstrated. 4. Selenate catalysed [(32)P]PP(i)-ATP exchange and competed with sulphate; K(m) (selenate) was 1.0mm and V (selenate) was 30% of V (sulphate). No AMP was formed with selenate as substrate. Molybdate did not catalyse PP(i)-ATP exchange, but AMP was formed. 5. Synthesis of adenosine 5'-[(35)S]sulphatophosphate was demonstrated by coupling purified ATP sulphurylase and Mg(2+)-dependent alkaline pyrophosphatase (also prepared from spinach) with [(35)S]sulphate and ATP as substrates; adenosine 5'-sulphatophosphate was not synthesized in the absence of pyrophosphatase. Some parameters of the coupled system are reported.  相似文献   

15.
In human platelets stimulated by thrombin and collagen, diacylglycerol is rapidly produced from phosphatidylinositol. Concurrently, an endogenous protein having a molecular weight of about 40,000 (40K protein) is phosphorylated, and serotonin is released. These reactions are all inhibited by a prior treatment of platelets with prostaglandin E1, dibutyryl cyclic AMP, sodium nitroprusside, or with 8-bromo-cyclic GMP, which are known as potent inhibitors for platelet activation. Ca2+-activated phospholipid-dependent protein kinase (protein kinase C) preferentially phosphorylates 40K protein. As judged by fingerprint analysis, the sites in 40K protein that are phosphorylated during the platelet activation appear to be identical with those phosphorylated by protein kinase C in a purified cell-free system. 12-O-Tetradecanoylphorbol-13-acetate, which directly activates protein kinase C by substituting for diacylglycerol, stimulates 40K protein phosphorylation and release reaction without inducing diacylglycerol formation. Tetracaine, which inhibits protein kinase C by competing with phospholipid, blocks 40K protein phosphorylation and serotonin release without inhibiting the receptor-linked diacylglycerol formation. The results indicate that thrombin and collagen activate platelets in almost similar mechanisms and that protein kinase C may lie on a common pathway which leads to the release of serotonin. However, analysis with indomethacin indicates that the role of thromboxane A2 appears to be more predominant for the action of collagen, and it is suggestive that this arachidonate metabolite activates platelets in an analogous mechanism to thrombin.  相似文献   

16.
Aspartate trancarbamylase (ATC ase; EC 2.1.3.2) from Serratia marcescens HY has been purified 134-fold. Its properties are unique. Unlike the ATCase from Escherichia coli and Salmonella typhimurium, the S. marcescens HY enzyme activity is not feedback inhibited by any purine or pyrimidine nucleotide effectors; instead, the enzyme is activated by both cytidine 5'-triphosphate and adenosine 5'-triphosphate. Like the ATCase from E. coli and S. typhimurium, adenosine 5'-triphosphate alters the [S]0.5 of the enzyme and, in contrast, cytidine 5'-triphosphate does not alter the [S]0.5 but, instead, alters the Vmax. As has been shown for both E. coli and S . typhimurium, effector sensitivity may be selectively dissociated form catalytic activity by treatment with heat, parachloromercuribenzoate, or neohydrin. This dissociated enzyme possesses threefold higher specific activity than the native enzyme. The sedimentation coefficient of the native enzyme is approximately 11.4S, whereas the dissociated enzyme has a value of 6.0S. Whereas it has been possible to reconstitute the E. coli and the S. marcescens ATCase enzymes from their own homologous subunits, it has not been possible to make hybrid enzymes of catalytic and regulatory heterologous subunits from each other. It was not possible to detect repression of ATCase formation after growth of prototrophic strains of S. marcescens HY supplemented with 200 mug of uracil per ml, but eightfold derepression was observed after uracil withdrawal in pyrimidine auxotrophs.  相似文献   

17.
The activation of human platelets by alpha-thrombin is mediated at least in part by cleavage of protease-activated G-protein-coupled receptors, PAR-1 and PAR-4. Platelet glycoprotein Ibalpha also has a high affinity binding site for alpha-thrombin, and this interaction contributes to platelet activation through a still unknown mechanism. In the present study the hypothesis that GpIbalpha may contribute to platelet activation by modulating the hydrolysis of PAR-1 on the platelet membrane was investigated. Gel-filtered platelets from normal individuals were stimulated by alpha-thrombin, and the kinetics of PAR-1 hydrolysis by enzyme was followed with flow cytometry using an anti-PAR-1 monoclonal antibody (SPAN 12) that recognizes only intact PAR-1 molecules. This strategy allowed measurement of the apparent k(cat)/K(m) value for thrombin hydrolysis of PAR-1 on intact platelets, which was equal to 1.5 +/- 0.1 x 10(7) m(-1) sec(-1). The hydrolysis rate of PAR-1 by thrombin was measured under conditions in which thrombin binding to GpIb was inhibited by different strategies, with the following results. 1) Elimination of GpIbalpha on platelet membranes by mocarhagin treatment reduced the k(cat)/K(m) value by about 6-fold. 2) A monoclonal anti-GpIb antibody reduced the apparent k(cat)/K(m) value by about 5-fold. 3) An oligonucleotide DNA aptamer, HD22, which binds to the thrombin heparin-binding site (HBS) and inhibits thrombin interaction with GpIbalpha, reduced the apparent k(cat)/K(m) value by about 5-fold. 4) Displacement of alpha-thrombin from the binding site on GpIb using PPACK-thrombin reduced the apparent k(cat)/K(m) value by about 5-fold, and 5) mutation at the HBS of thrombin (R98A) caused a 5-fold reduction of the apparent k(cat)/K(m) value of PAR-1 hydrolysis. Altogether these results show that thrombin interaction with GpIb enhances the specificity of thrombin cleavage of PAR-1 on intact platelets, suggesting that GpIb may function as a "cofactor" for PAR-1 activation by thrombin.  相似文献   

18.
Abstract Adenylate cyclase activity of Alternaria solani bound to the particulate cell fraction was solubilized by 2.5% Ficoll. The apparent K m of the solubilized enzyme for adenosine 5'-triphosphate was 2.5 mM, and it required Mn2+ for maximum activity. M r as determined by gel filtration was approximately 500. Fluoride ions at millimolar concentrations, GTP, adenosine, and N6-phenylisopropyl adenosine at micromolar concentrations did not stimulate adenylate cyclase activity. The enzyme was inhibited 25–55% by millimolar concentrations of 2'-deoxyadenosine, 2'-0 methyl adenosine, 9-β- d -arabinofuranosyl adenosine and 2'-3'-isopropylidene adenosine. Partially purified enzyme obtained after DEAE-BioGel chromatography was very unstable. The amount of extractable enzyme activity varied during the fungal growth cycle.  相似文献   

19.
The adenosine 5'-triphosphate (ATP)-linked transhydrogenase reaction, present in the particulate fractions of Escherichia coli, was previously shown to be inhibited in these fractions when the bacteria were treated with colicins K or El. The purpose of this study was to characterized the ATP-linked transhydrogenase reaction and the colicin-caused inhibition of the reaction in purified cytoplasmic membranes. Particulate fractions from bacteria treated or untreated with colicins were separated on sucrose gradients into cell wall membrane and cytoplasmic membrane fractions. The ATP-linked transhydrogenase reaction was found to be exclusively associated with the cytoplasmic membrane fractions. The reaction was inhibited by carbonylcyanide m-chlorophenlhdrazone, dinitrophenol, N,N'-dicyclohexylcarbodiimide, and trypsin. Although the cytoplasmic membrane fractions were purified from the majoriy of the cell wall membrane and its bound colicins, they showed the inhibitory effects of colicins K and El on the ATP-linked transhydrogenase reaction. The inhibition of ATP-linked transhydrogenase reaction induced by the colicin could not be reversed by subjection the isolated membranes to a variety of physical and chemical treatments. Cytoplasmic membranes depleted of energy-transducing adenosine triphosphatase ATPase) complex (coupling factor) lost the ATP-linked transhydrogenase activity. The ATPase complexes isolated from membranes of bacteria treated or untreated with colicins El or K reconstituted high levels of ATP-linded transhydrogenase activity to depleted membranes of untreated bacteria. The same ATPase complexes reconstituted low levels of activity to depleted membranes of the treated bacteria.  相似文献   

20.
1. Adenylate kinase (EC 2.7.4.3) has been shown to be present in human plasma obtained by conventional means and the adenylate-kinase activities of plasma and of lysed and intact human platelets and erythrocytes have been measured at 37 degrees by sensitive spectrophotometric methods. 2. The activities found in plasma ranged from 2.7 to 22.9mumoles of ADP formed/min./l. and in lysed platelets and lysed erythrocytes mean values of 0.79 and 12.0mumoles of ADP formed/min./10(9) cells respectively were found. Intact platelets and erythrocytes showed little or no activity. 3. The apparent K(m) of plasma adenylate kinase for ADP was found to be 1.4-1.6mm. 4. The adenylate-kinase activity of plasma was correlated with the free haemoglobin present and the larger part of the activity could be accounted for by haemolysis occurring either during the withdrawal of the blood or in vivo. 5. Aggregation of platelets by ADP, collagen fibres or thrombin released up to 16% of the platelet adenylate kinase into the suspending medium. 6. Measurement of the rate of breakdown of 1.6mum-ADP in plasma gave values of about 0.1mmu-mole/min./ml. This was not increased by addition of sufficient erythrocyte lysate to increase the activity of plasma adenylate kinase five to ten times. 7. It was concluded that the activity of adenylate kinase found in plasma, even after aggregation of the platelets, is insufficient to account for the rate of breakdown of low concentrations of ADP usually observed, and that another enzyme is responsible for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号