首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of endocrine resistance during tumor progression represents a major challenge in the management of estrogen receptor alpha (ERα) positive breast tumors and is an area under intense investigation. Although the underlying mechanisms are still poorly understood, many studies point towards the ‘cross-talk’ between ERα and MAPK signaling pathways as a key oncogenic axis responsible for the development of estrogen-independent growth of breast cancer cells that are initially ERα+ and hormone sensitive. In this study we employed a metastatic breast cancer xenograft model harboring constitutive activation of Raf-1 oncogenic signaling to investigate the mechanistic linkage between aberrant MAPK activity and development of endocrine resistance through abrogation of the ERα signaling axis. We demonstrate for the first time the causal role of the Aurora-A mitotic kinase in the development of endocrine resistance through activation of SMAD5 nuclear signaling and down-regulation of ERα expression in initially ERα+ breast cancer cells. This contribution is highly significant for the treatment of endocrine refractory breast carcinomas, because it may lead to the development of novel molecular therapies targeting the Aurora-A/SMAD5 oncogenic axis. We postulate such therapy to result in the selective eradication of endocrine resistant ERαlow/− cancer cells from the bulk tumor with consequent benefits for breast cancer patients.  相似文献   

2.
KLF4 plays an important role in orchestrating a variety of cellular events, including cell-fate decision, genome stability and apoptosis. Its deregulation is correlated with human diseases such as breast cancer and gastrointestinal cancer. Results from recent biochemical studies have revealed that KLF4 is tightly regulated by posttranslational modifications. Here we report a new finding that KLF4 orchestrates estrogen receptor signaling and facilitates endocrine resistance. We also uncovered the underlying mechanism that alteration of KLF4 by posttranslational modifications such as phosphorylation and ubiquitylation changes tumor cell response to endocrine therapy drugs. IHC analyses using based on human breast cancer specimens showed the accumulation of KLF4 protein in ER-positive breast cancer tissues. Elevated KLF4 expression significantly correlated with prognosis and endocrine resistance. Our drug screening for suppressing KLF4 protein expression led to identification of Src kinase to be a critical player in modulating KLF4-mediated tamoxifen resistance. Depletion of VHL (von Hippel-Lindau tumor suppressor), a ubiquitin E3 ligase for KLF4, reduces tumor cell sensitivity to tamoxifen. We demonstrated phosphorylation of VHL by Src enhances proteolysis of VHL that in turn leads to upregulation of KLF4 and increases endocrine resistance. Suppression of Src-VHL-KLF4 cascade by Src inhibitor or enhancement of VHL-KLF4 ubiquitination by TAT-KLF4 (371-420AAa) peptides re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen treatment. Taken together, our findings demonstrate a novel role for KLF4 in modulating endocrine resistance via the Src-VHL-KLF4 axis.  相似文献   

3.
4.
Estrogen and its cognate estrogen receptor are key players in the etiology and progression of breast cancer. Aromatase inhibitors, suppressing tumor and plasma estrogen levels by blocking testosterone conversion to estrogen, have been proven to provide the most effective endocrine therapy for postmenopausal breast cancer patients. Aromatase inhibitors are now the first choice endocrine therapy in the metastatic setting for postmenopausal women. These endocrine agents also seem likely to soon become the standard adjuvant therapy, either alone or in sequence with tamoxifen, though their long-term toxicity and the optimum duration of therapy still remain to be defined. Advanced experimental studies and some clinical observations reveal the importance of blocking both the genomic and non-genomic activities of the estrogen receptor, as well as its crosstalk with growth factor and other cellular signaling, for greatest effectiveness of endocrine therapy. Consequently, these studies provide a mechanistic explanation for the superb performance of aromatase inhibitors, and also suggest how inhibiting selected growth factor receptors might delay or prevent the onset of resistance to aromatase inhibitors and other endocrine therapies.  相似文献   

5.
Ma CX  Crowder RJ  Ellis MJ 《Steroids》2011,76(8):750-752
Endocrine therapy has been the most effective treatment modality for hormone receptor positive breast cancer. However, its efficacy has been limited by either de novo or acquired resistance. Recent data indicates that activation of the phosphatidylinositol 3-kinase (PI3K) signaling is associated with the poor outcome luminal B subtype of breast cancer and accompanied by the development of endocrine therapy resistance. Importantly, inhibition of PI3K pathway signaling in endocrine resistant breast cancer cell lines reduces cell survival and improves treatment response to endocrine agents. Interestingly, mutations in PIK3CA, the alpha catalytic subunit of the class IA PI3K, which renders cells dependent on PI3K pathway signaling, is the most common genetic abnormality identified in hormone receptor positive breast cancer. The synthetic lethality observed between estrogen deprivation and PI3K pathway inhibition in estrogen receptor positive (ER+) breast cancer cell lines provides further scientific rational to target both estrogen receptor and the PI3K pathway in order to improve the outcome of ER+ breast cancer.  相似文献   

6.
Regulation of multidrug resistance in cancer cells by hyaluronan   总被引:9,自引:0,他引:9  
Multidrug resistance in cancer cells is often due to ATP-dependent efflux pumps, but is also linked to alterations in cell survival and apoptotic signaling pathways. We have found previously that perturbation of hyaluronan-tumor cell interaction by treatment with hyaluronan oligosaccharides suppresses the phosphoinositide 3-kinase/Akt cell survival signaling pathway in cancer cells and reduces tumor growth in vivo. Here we find that these oligomers suppress both the MAP kinase and phosphoinositide 3-kinase pathways in multidrug resistant tumor cells and sensitize these cells to a variety of chemotherapeutic drugs. On the other hand, increased hyaluronan production induces resistance in drug-sensitive tumor cells. Likewise, increased expression of emmprin, which is a glycoprotein that is present on the surface of most malignant cancer cells and that stimulates hyaluronan production, also induces increased resistance. Thus, perturbation of hyaluronan signaling may provide a dual therapeutic role, since it has intrinsic suppressive effects on tumor growth as well as sensitizing cancer cells to chemotherapeutic agents.  相似文献   

7.
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.  相似文献   

8.
Multiple cellular pathways influence the growth and metastatic potential of tumors. This creates heterogeneity, redundancy, and the potential for tumors to bypass signaling pathway blockade, resulting in primary or acquired resistance. Combining therapies that inhibit different signaling pathways has the potential to be more effective than inhibition of a single pathway and to overcome tumor resistance. Vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) inhibitors have become key therapies in several tumor types. Close relationships between these factors exist: VEGF signaling is up-regulated by EGFR expression and, conversely, VEGF up-regulation independent of EGFR signaling seems to contribute to resistance to EGFR inhibition. Therefore, inhibition of both pathways could improve antitumor efficacy and overcome resistance to EGFR inhibition. Preclinical studies have shown that VEGF and EGFR inhibitors can have additive effects and that combined inhibition is effective in EGFR inhibitor-resistant cell lines. Clinical trials have also produced promising data: combining the anti-VEGF monoclonal antibody bevacizumab with the anti-EGFR antibody cetuximab or the EGFR tyrosine kinase inhibitor erlotinib increases benefit compared with either of these anti-EGFR agents alone or combined with chemotherapy. The potential of this novel approach to anticancer therapy will be elucidated by large, ongoing clinical trials.  相似文献   

9.
Chumsri S  Sabnis GJ  Howes T  Brodie AM 《Steroids》2011,76(8):730-735
Aromatase inhibitors (AIs) have become the front-line choice for treatment of ER+ breast cancer. Nevertheless, although patients are responsive initially, they may acquire resistance and become unresponsive to further treatment. In addition, approximately 25% of breast cancers do not express the estrogen receptor (ERα) and consequently, are innately resistant to endocrine therapy. We have investigated the mechanisms associated with this lack of treatment response using xenograft models. We found that in cells and tumors that acquired resistance to the AI letrozole therapy, expression of the ER was reduced whereas growth factor signally was enhanced, including a marked increase in HER2 expression. Treatment with trastuzumab (HER2 antibody) resulted in a significant down-regulation of HER2 and p-MAPK as well as restoration of ERα expression. Thus, when trastuzumab was added to letrozole treatment at the time of tumor progression, there was significantly prolonged tumor suppression compared to trastuzumab or letrozole alone. This suggests that inhibition of both HER2 and ERα signaling pathways are required for overcoming resistance and restoring treatment sensitivity. ER negative tumors are innately resistant to endocrine therapy. Repression of the ERα has been found to be due to epigenetic modifications such as increased methylation and histone deacetylation. We found that entinostat (ENT), a histone deacetylase inhibitor (HDACi), activated not only expression of ERα but also aromatase in MDA-MB-231 ER-negative breast cancer cells, resulting in their ability to respond to estrogen and letrozole. Treatment with ENT in combination with letrozole significantly reduced tumor growth rate in xenografts compared to control tumors (p < 0.001). ENT plus letrozole treatment also prevented the colonization and growth of MDA-MB-231 cells in the lung with a significant reduction (p < 0.03) in both visible and microscopic foci. These results provide a strong indication for possible use of AIs in combination with HDAC inhibitors for the treatment of ER-negative breast cancer.  相似文献   

10.
11.
12.
13.
Aromatase inhibitors are rapidly becoming the first choice for hormonal treatment of steroid receptor positive breast cancer in postmenopausal women. An understanding of the resistance mechanisms to these agents is, therefore, important for the appropriate delivery of treatment to responsive patients and the rational development of new agents targeted at the resistance pathways. De novo resistance appears to be a quantitative rather than qualitative phenomenon with virtually all oestrogen receptor positive tumours showing an anti-proliferative response to the aromatase inhibitor anastrozole. While the expression of type 1 growth factor receptors reduces response to tamoxifen this appears to have little detrimental effect on response to aromatase inhibitors. Studies of acquired resistance in vitro have indicated that acquisition of hypersensitivity to oestrogenic stimulation is a key mechanism that is dependent on enhanced cross-talk of growth factor and oestrogen signaling pathways. Collection of resistant biopsy tissues from patients is important to determine if this mechanism is clinically relevant.  相似文献   

14.
15.
Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers.  相似文献   

16.
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies with distinct prognosis based on primary tumor localization, grade, stage and functionality. Surgery remains the only curative option in localized tumors, but systemic therapy is the mainstay of treatment for patients with advanced disease. For decades, the therapeutic landscape of GEP-NETs was limited to chemotherapy regimens with low response rates. The arrival of novel agents such as somatostatin analogues, peptide receptor radionuclide therapy, tyrosine kinase inhibitors or mTOR-targeted drugs, has changed the therapeutic paradigm of GEP-NETs. However, the efficacy of these agents is limited in time and there is scarce knowledge of optimal treatment sequencing. In recent years, massive parallel sequencing techniques have started to unravel the genomic intricacies of these tumors, allowing us to better understand the mechanisms of resistance to current treatments and to develop new targeted agents that will hopefully start an era for personalized treatment in NETs. In this review we aim to summarize the most relevant genomic aberrations and signaling pathways underlying GEP-NET tumorigenesis and potential therapeutic strategies derived from them.  相似文献   

17.
There are many epigenetic variables that affect the biological responses of autocrine, paracrine and endocrine regulatory molecules, which determine the growth and development of different cancers including prostate cancer (PCA). One of the focuses of the current cancer chemoprevention studies is the search for non-toxic chemopreventive agents that inhibit mitogenic and cell survival signaling in cancer cells. In general, advanced stage cancer cells harbor many constitutively active mitogenic signaling and anti-apoptotic mechanisms, which make them less dependent on external growth factors as well as resistant to chemotherapeutic agents. In this regard, silibinin (a naturally occurring flavanone) has shown the pleiotropic anticancer effects in different cancer cells. Our extensive studies with PCA have shown that inhibition of mitogenic and cell survival signaling, such as epidermal growth factor receptor, insulin-like growth factor receptor type I and nuclear factor kappa B signaling are the most likely molecular targets of silibinin's efficacy in PCA. We have observed that silibinin inhibits prostate tumor growth in animal models without any apparent signs of toxicity. At the same time, silibinin is also physiologically available in different organs of the body including plasma and prostate, which is generally required for the pharmacological dosing and translational mechanistic studies of the compound. There are substantial amount of data to support the inhibitory effect of silibinin on mitogenic and cell survival signaling in PCA, which are reviewed in the present communication.  相似文献   

18.
19.
Breast cancer is the most common malignant tumor among women, comprising an estimated 24% of all cancer cases and 18% of all cancer deaths. At least half of the patients with primary breast cancer will ultimately die by metastatic disease. The tumor characteristics, the natural course of the disease and the response to therapy vary strongly. A number of recently detected cell biological parameters such as oncogenes/suppressor genes, growth factors and secretory proteins are more or less important prognostic factors, because they influence the characteristics and behavior of a tumor with respect to metastatic pattern, extent of cellular differentiation, growth rate and response to treatment. However, there is no clear consensus how best to identify patients at high or low risk. In our experience c-myc amplification and pS2 protein are strong prognosticators for relapse rate, while in advanced disease (apart from a negative estrogen/progesterone receptor/pS2 status) amplification of HER2/neu is a good prognosticator for failure to endocrine therapy. In the diagnosis of breast cancer, in vivo imaging of tumors by labeled hormones or other factors also forms a new development which might have implications for treatment too. With respect to treatment both endocrine and chemotherapy can cure a minority of patients with micrometastases, but in patients with advanced disease only a prolongation of (progression-free) survival can be reached. Response rates decrease with increasing tumor load. In the past decade a number of interesting new endocrine agents has been developed such as new (pure) (anti)steroidal agents, vitamins, aromatase inhibitors, analogs of peptide hormones, prolactin inhibitors and growth factor antagonists. However, less is known on the (potential) interaction between hormones, chemotherapeutic agents, retinoids, cytokins, growth factor antagonists and irradiation. Rapid detection of new powerful combination therapies are needed to improve treatment results during the nineties.  相似文献   

20.
Development of drug resistance has considerably limited the efficacy of cancer treatments, including chemotherapy and targeted therapies. Hence, understanding the molecular mechanisms underpinning the innate or the acquired resistance to these therapies is critical to improve drug efficiency and clinical outcomes. Several studies have implicated microRNAs (miRNA) in this process. MiRNAs repress gene expression by specific binding to complementary sequences in the 3' region of target messenger RNAs (mRNAs), followed by target mRNA degradation or blocked translation. By targeting molecules specific to a particular pathway within tumor cells, the new generation of cancer treatment strategies has shown significant advantages over conventional chemotherapy. However, the long-term efficacy of targeted therapies often remains poor, because tumor cells develop resistance to such therapeutics. Targeted therapies often involve monoclonal antibodies (mAbs), such as those blocking the ErB/HER tyrosine kinases, epidermal growth factor receptor (cetuximab) and HER2 (trastuzumab), and those inhibiting vascular endothelial growth factor receptor signaling (e.g., bevacizumab). Even though these are among the most used agents in tumor medicine, clinical response to these drugs is reduced due to the emergence of drug resistance as a result of toxic effects in the tumor microenvironment. Research on different types of human cancers has revealed that aberrant expression of miRNAs promotes resistance to the aforementioned drugs. In this study, we review the mechanisms of tumor cell resistance to mAb therapies and the role of miRNAs therein. Emerging treatment strategies combine therapies using innovative miRNA mimics or antagonizers with conventional approaches to maximize outcomes of patients with cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号