首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traumatic brain injury features deficits are often ameliorated by dopamine (DA) agonists. We have previously shown deficits in striatal DA neurotransmission using fast scan cyclic voltammetry after controlled cortical impact (CCI) injury that are reversed after daily treatment with the DA uptake inhibitor methylphenidate (MPH). The goal of this study was to determine how a single dose of MPH (5 mg/kg) induces changes in basal DA and metabolite levels and with electrically evoked overflow (EO) DA in the striatum of CCI rats. MPH-induced changes in EO DA after a 2-week daily pre-treatment regime with MPH was also assessed. There were no baseline differences in basal DA or metabolite levels. MPH injection significantly increased basal [DA] output in dialysates for control but not injured rats. Also, MPH injection increased striatal peak EO [DA] to a lesser degree in CCI (176% of baseline) versus control rats (233% of baseline). However, daily pre-treatment with MPH resulted in CCI rats having a comparable increase in EO [DA] after MPH injection when compared with controls. The findings further support the concept that daily MPH therapy restores striatal DA neurotransmission after CCI.  相似文献   

2.
Alterations in 5‐HT1B receptor function during cocaine abstinence were evaluated in rats given either limited‐ or extended access (LA and EA, respectively) to cocaine self‐administration. The locomotor response to the 5‐HT1B/1A agonist RU24969 was significantly reduced in cocaine‐experienced animals relative to cocaine‐naïve controls following 6 h of abstinence but became sensitized over the subsequent 14 days of abstinence. Both the early phase subsensitivity and later phase supersensivity to RU 24969‐induced activity were greater in EA versus LA animals. Intra‐nucleus accumbens administration of the 5‐HT1B agonist CP 93, 129 produced significantly greater increases in dialysate dopamine levels in EA versus control animals following 14 days of abstinence. However, there was no difference between EA and cocaine‐naïve control animals in the augmentation of cocaine‐induced increases in nucleus accumbens DA produced by intra‐VTA CP 93, 129. Collectively these findings demonstrate that 5‐HT1B receptor function is persistently altered by cocaine self‐administration.  相似文献   

3.
In vitro expanded CNS precursors could provide a renewable source of dopamine (DA) neurons for cell therapy in Parkinson's disease. Functional DA neurons have been derived previously from early midbrain precursors. Here we demonstrate the ability of Nurr1, a nuclear orphan receptor essential for midbrain DA neuron development in vivo, to induce dopaminergic differentiation in naïve CNS precursors in vitro. Independent of gestational age or brain region of origin, Nurr1‐induced precursors expressed dopaminergic markers and exhibited depolarization‐evoked DA release in vitro. However, these cells were less mature and secreted lower levels of DA than those derived from mesencephalic precursors. Transplantation of Nurr1‐induced DA neuron precursors resulted in limited survival and in vivo differentiation. No behavioral improvement in apomorphine‐induced rotation scores was observed. These results demonstrate that Nurr1 induces dopaminergic features in naïve CNS precursors in vitro. However, additional factors will be required to achieve in vivo function and to unravel the full potential of neural precursors for cell therapy in Parkinson's disease.  相似文献   

4.
5.
Despite extensive investigations of Cbl‐interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post‐synaptic compartment of striatal neurons in which it co‐clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice.  相似文献   

6.
Mating is critical for species survival and is profoundly regulated by neuromodulators and neurohormones to accommodate internal states and external factors. To identify the underlying neuromodulatory mechanisms, we investigated the roles of dopamine receptors in various aspects of courtship behavior in Drosophila. Here, we report that the D1 dopamine receptor dDA1 regulates courtship drive in naïve males. The wild‐type naïve males actively courted females regardless their appearance or mating status. On the contrary, the dDA1 mutant (dumb) males exhibited substantially reduced courtship toward less appealing females including decapitated, leg‐less and mated females. The dumb male's reduced courtship activity was due to delay in courtship initiation and prolonged intervals between courtship bouts. The dampened courtship drive of dumb males was rescued by reinstated dDA1 expression in the mushroom body α/β and γ neurons but not α/β or γ neurons alone, which is distinct from the previously characterized dDA1 functions in experience‐dependent courtship or other learning and memory processes. We also found that the dopamine receptors dDA1, DAMB and dD2R are dispensable for associative memory formation and short‐term memory of conditioned courtship, thus courtship motivation and associative courtship learning and memory are regulated by distinct neuromodulatory mechanisms. Taken together, our study narrows the gap in the knowledge of the mechanism that dopamine regulates male courtship behavior.  相似文献   

7.
In testing the hypothesis of Alzheimer's disease (AD)‐like pathology in late stage traumatic brain injury (TBI), we evaluated AD pathological markers in late stage TBI model. Sprague–Dawley male rats were subjected to moderate controlled cortical impact (CCI) injury, and 6 months later euthanized and brain tissues harvested. Results from H&E staining revealed significant 33% and 10% reduction in the ipsilateral and contralateral hippocampal CA3 interneurons, increased MHCII‐activated inflammatory cells in many gray matter (8–20‐fold increase) and white matter (6–30‐fold increased) regions of both the ipsilateral and contralateral hemispheres, decreased cell cycle regulating protein marker by 1.6‐ and 1‐fold in the SVZ and a 2.3‐ and 1.5‐fold reductions in the ipsilateral and contralateral dentate gyrus, diminution of immature neuronal marker by two‐ and onefold in both the ipsilateral and contralateral SVZ and dentate gyrus, and amplified amyloid precursor protein (APP) distribution volumes in white matter including corpus callosum, fornix, and internal capsule (4–38‐fold increase), as well as in the cortical gray matter, such as the striatum hilus, SVZ, and dentate gyrus (6–40‐fold increase) in TBI animals compared to controls (P's < 0.001). Surrogate AD‐like phenotypic markers revealed a significant accumulation of phosphorylated tau (AT8) and oligomeric tau (T22) within the neuronal cell bodies in ipsilateral and contralateral cortex, and dentate gyrus relative to sham control, further supporting the rampant neurodegenerative pathology in TBI secondary cell death. These findings indicate that AD‐like pathological features may prove to be valuable markers and therapeutic targets for late stage TBI. J. Cell. Physiol. 232: 665–677, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

8.
Unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) causes a loss of dopamine (DA) in the ipsilateral striatum and contralateral motor deficits. However, if a cast is placed on the ipsilateral limb during the first 7 days following 6-OHDA infusion, forcing the animal to use its contralateral limb, both the behavioral and neurochemical deficits are reduced. Here, we examine the effect of forced reliance on a forelimb during the 7 days prior to ipsilateral infusion of 6-OHDA on the deficits characteristic of this lesion model. Casted animals displayed no behavioral asymmetries as measured 14-28 days postlesion and a marked attenuation in the loss of striatal DA and its metabolites at 30 days. In addition, animals receiving a unilateral cast alone had an increase in glial cell-line derived neurotrophic factor (GDNF) protein in the striatum corresponding to the overused limb. GDNF increased within 1 day after the onset of casting, peaked at 3 days, and returned to baseline within 7 days. These results suggest that preinjury forced limb-use can prevent the behavioral and neurochemical deficits to the subsequent administration of 6-OHDA and that this may be due in part to neuroprotective effects of GDNF.  相似文献   

9.
The cytochrome P450 2D (CYP2D) mediates synthesis of serotonin from 5‐methoxytryptamine (5‐MT), shown in vitro for cDNA‐expressed CYP2D‐isoforms and liver and brain microsomes. We aimed to demonstrate this synthesis in the brain in vivo. We measured serotonin tissue content in brain regions after 5‐MT injection into the raphe nuclei (Model‐A), and its extracellular concentration in rat frontal cortex and striatum using an in vivo microdialysis (Model‐B) in male Wistar rats. Naïve rats served as control animals. 5‐MT injection into the raphe nuclei of PCPA‐(tryptophan hydroxylase inhibitor)‐pretreated rats increased the tissue concentration of serotonin (from 40 to 90% of the control value, respectively, in the striatum), while the CYP2D inhibitor quinine diminished serotonin level in some brain structures of those animals (Model‐A). 5‐MT given locally through a microdialysis probe markedly increased extracellular serotonin concentration in the frontal cortex and striatum (to 800 and 1000% of the basal level, respectively) and changed dopamine concentration (Model‐B). Quinine alone had no effect on serotonin concentration; however, given jointly with 5‐MT, it prevented the 5‐MT‐induced increase in cortical serotonin in naïve rats and in striatal serotonin in PCPA‐treated animals. These results indicate that the CYP2D‐catalyzed alternative pathway of serotonin synthesis from 5‐MT is relevant in the brain in vivo, and set a new target for the action of psychotropics.

  相似文献   


10.
Neurotoxic regimens of methamphetamine (METH) result in reactive microglia and astrocytes in striatum. Prior data indicate that rats with partial dopamine (DA) loss resulting from prior exposure to METH are resistant to further decreases in striatal DA when re‐exposed to METH 30 days later. Such resistant animals also do not show an activated microglia phenotype, suggesting a relation between microglial activation and METH‐induced neurotoxicity. To date, the astrocyte response in such resistance has not been examined. Thus, this study examined glial‐fibrillary acidic protein (GFAP) and CD11b protein expression in striata of animals administered saline or a neurotoxic regimen of METH on post‐natal days 60 and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:METH). Consistent with previous work, animals experiencing acute toxicity (Saline:METH) showed both activated microglia and astocytes, whereas those resistant to the acute toxicity (METH:METH) did not show activated microglia. Interestingly, GFAP expression remained elevated in rats exposed to METH at PND60 (METH:Saline), and was not elevated further in resistant rats treated for the second time with METH (METH:METH). These data suggest that astrocytes remain reactive up to 30 days post‐METH exposure. In addition, these data indicate that astrocyte reactivity does not reflect acute, METH‐induced DA terminal toxicity, whereas microglial reactivity does.  相似文献   

11.
Amphetamine (AMPH) is a highly addictive drug of abuse which exhibits toxicity to dopaminergic neurons in long‐term abusers. Estrogen seems to show neuroprotection in dopamine (DA) deficit caused by AMPH. The present study was to investigate the effects of estradiol on the levels of striatal DA in ovariectomized (Ovx) rats treated with or without AMPH. Female rats were Ovx for 2 weeks before administration of AMPH (5 mg/kg/day, i.p.) with or without 17β‐estradiol benzoate (EB) (25 µg/kg/day, s.c.) for 7 days. The striatal tissues were collected, homogenized with DA mobile phase, and centrifuged. The concentrations of DA in the supernatants were detected by HPLC. The protein expressions of dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT‐2), and tyrosine hydroxylase (TH) were analyzed by Western blotting. The results indicated that AMPH could attenuate DA level significantly in striatum (P < 0.01). Comparing to control groups, administration of either EB or EB plus AMPH increased DA level (P < 0.01). The protein expression of striatal DAT was significant greater (P < 0.01) in rats treated with AMPH plus EB than AMPH treated animals. These results suggest that the DA levels in striatum can be enhanced by EB via an increase of DAT expression following administration of AMPH. J. Cell. Biochem. 108: 1318–1324, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Predation is a pervasive selective agent shaping a prey's behaviour, morphology and life history. To survive, prey animals have to respond adaptively to predation threats and this can be achieved through learned predator recognition. Cultural transmission of predator recognition is likely a widespread means of learning in social animals, including mammals, birds and fishes. However, no studies have investigated the cultural transmission of predator recognition in amphibians. In our study, we examined whether naïve woodfrog (Rana sylvatica) tadpoles can acquire the recognition of the odour of a predatory tiger salamander (Ambystoma tigrinum) from experienced conspecifics. After conditioning some tutors to recognize salamander odour, we paired naïve observer tadpoles with either a salamander‐naïve or salamander‐experienced tutor and exposed the pairs to either salamander odour or a water control. Observers were subsequently tested alone for a response to salamander odour. We found that when given salamander odour, observer tadpoles that were paired with a salamander‐experienced tutor successfully learned to recognize the salamander odour as a threat, whereas the observers paired with salamander‐naïve tutors did not. Likewise, tadpoles exposed to the water control did not learn to recognize the salamander regardless of whether they were paired with a naïve or experienced tutor. This is the first study demonstrating cultural transmission of predator recognition in an amphibian species.  相似文献   

13.
Compensatory mechanisms in dopamine (DA) signaling have long been proposed to delay onset of locomotor symptoms during Parkinson's disease progression until ~ 80% loss of striatal DA occurs. Increased striatal dopamine turnover has been proposed to be a part of this compensatory response, but may occur after locomotor symptoms. Increased tyrosine hydroxylase (TH) activity has also been proposed as a mechanism, but the impact of TH protein loss upon site‐specific TH phosphorylation in conjunction with the impact on DA tissue content is not known. The tissue content of DA was determined against TH protein loss in the striatum and substantia nigra (SN) following 6‐hydroxydopamine lesion in the medial forebrain bundle in young Sprague–Dawley male rats. Although DA predictably decreased in both regions following 6‐hydroxydopamine, there was a significant difference in DA loss between the striatum (75%) and SN (40%), despite similar TH protein loss. Paradoxically, there was a significant decrease in DA against remaining TH protein in striatum, but a significant increase in DA against remaining TH in SN. In the SN, increased DA per remaining TH protein was matched by increased ser31, but not ser40, TH phosphorylation. In striatum, both ser31 and ser40 phosphorylation decreased, reflecting decreased DA per TH. However, in control nigral and striatal tissue, only ser31 phosphorylation correlated with DA per TH protein. Combined, these results suggest that the phosphorylation of ser31 in the SN may be a mechanism to increase DA biosynthesis against TH protein loss in an in vivo model of Parkinson's disease.

  相似文献   


14.
The effect of endogenous 3α‐hydroxy‐5α‐pregnan‐20‐one (3α,5α‐TH PROG) on the modulation of mesocortical dopamine extracellular concentration by ethanol was investigated by microdialysis in rats. Intraperitoneal injection of progesterone (5 mg/kg, once a day for 5 days) increased the cortical content of 3α,5α‐TH PROG and potentiated the biphasic effect of acute intraperitoneal administration of ethanol on dopamine content. A dose of ethanol (0.25 g/kg) that was ineffective in naïve rats induced a 55% increase in dopamine extracellular concentration in rats pretreated with progesterone. This increase was similar to that induced by a higher dose (0.5 g/kg) of ethanol in naïve rats. Administration of ethanol at 0.5 g/kg to progesterone‐pretreated rats inhibited dopamine content by an extent similar to that observed with an even higher dose (1 g/kg) in naïve rats. The administration of the 5α‐reductase inhibitor finasteride (25 mg/kg, subcutaneous), together with progesterone, prevented the effects of the latter, both on the cortical concentration of 3α,5α‐TH PROG and on the modulation by ethanol of dopamine content. These data suggest that 3α,5α‐TH PROG contributes to the action of ethanol on the mesocortical dopaminergic system. They also suggest that physiological fluctuations in the brain concentrations of neuroactive steroids associated with the oestrous cycle, menopause, pregnancy and stress may alter the response of mesocortical dopaminergic neurons to ethanol.  相似文献   

15.
Mephedrone (4‐methylmethcathinone) is a synthetic cathinone designer drug that alters pre‐synaptic dopamine (DA) activity like many psychostimulants. However, little is known about the post‐synaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and post‐synaptic D1‐like and D2‐like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone‐induced increases in basal ganglia NT levels were mediated by D1‐like receptors in the striatum and the substantia nigra by both D1‐like and D2‐like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self‐administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption.

  相似文献   


16.
17.
The purpose of this study was to examine whether monoamine oxidase type B (MAO-B) has a role in striatal dopamine metabolism in animals with a unilateral lesion of the medial forebrain bundle, and whether 2-phenylethylamine (PE) could have a role in amplification of dopamine (DA) responses in DA depleted striatum. Inhibition of MAO-B did not alter DA metabolism in lesioned striata. PE accumulation decreased with loss of DA as long as there was no DA dysfunction. In lesioned striata with dysfunction of DA transmission at the synaptic level, PE accumulation increased,suggesting a compensatory increase in PE synthesis. This increase in PE levels does not appear to be mediated by an increase in the total striatal aromaticl-amino acid decarboxylase (AADC) activity. We conclude that inhibition of MAO-B has no effect on DA metabolism in the hemi-parkinsonian rat striatum and that PE could be involved in the antiparkinsonian action of MAO-B inhibitors.  相似文献   

18.
Extensive research has focused on the neurotransmitter dopamine because of its importance in the mechanism of action of drugs of abuse (e.g. cocaine and amphetamine), the role it plays in psychiatric illnesses (e.g. schizophrenia and Attention Deficit Hyperactivity Disorder), and its involvement in degenerative disorders like Parkinson''s and Huntington''s disease. Under normal physiological conditions, dopamine is known to regulate locomotor activity, cognition, learning, emotional affect, and neuroendocrine hormone secretion. One of the largest densities of dopamine neurons is within the striatum, which can be divided in two distinct neuroanatomical regions known as the nucleus accumbens and the caudate-putamen. The objective is to illustrate a general protocol for slice fast-scan cyclic voltammetry (FSCV) within the mouse striatum. FSCV is a well-defined electrochemical technique providing the opportunity to measure dopamine release and uptake in real time in discrete brain regions. Carbon fiber microelectrodes (diameter of ~ 7 μm) are used in FSCV to detect dopamine oxidation. The analytical advantage of using FSCV to detect dopamine is its enhanced temporal resolution of 100 milliseconds and spatial resolution of less than ten microns, providing complementary information to in vivo microdialysis.  相似文献   

19.

Aims

To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery.

Materials and Methods

In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury.

Results

Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion.

Conclusion

Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury.  相似文献   

20.
Infection of BALB/c mice with murine cytomegalovirus (MCMV) leads to CD8 cell responses to an immunodominant epitope YPHFMPTNL. We presented this epitope as a nasal peptide vaccine in combination with cholera toxin adjuvant, and evaluated immune responses and protection from MCMV challenge. Vaccination of naïve mice generated elevated numbers of peptide‐specific interferon‐7‐secreting splenocytes (median 80/million, range 60 to 490), compared to control mice (median 2/million, range —4.5 to 8; P=0.008, Mann‐Whitney test). Twelve days after challenge with virulent MCMV, vaccinated mice had a 1.1 log10 reduction in salivary gland viral titer compared to unvaccinated controls (5.36±0.24 vs. 6.42±0.12, mean±SD log10 plaque‐forming‐units; P<0.001, t‐test). Mice with chronic MCMV infection had consistent responses to the peptide (183±24/million interferon‐γ‐secreting splenocytes). Nasal peptide vaccination during chronic infection boosted peptide‐specific responses in two of four mice to >900/million interferon‐γ‐secreting splenocytes. Nasal peptide vaccination was immunogenic in naïve and MCMV‐infected mice, and reduced viral burden in naïve mice after virulent MCMV challenge. The nasal route may be useful for peptide presentation by novel human vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号