首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl glucoside andmyo-inositol are present in all organs ofrose (Rosa hybridaL.). To investigate the possible role of thesecarbohydrates in the opening of cut roses, flowers with a 10,20 or 40-cm-long stem and a single flower bud (about 1.5 cmin diameter) were placed in water and flower opening and changesin sugar content in flowers and stems examined for 7 d. Thelonger the stem of the cut flower, the larger was the flowerdiameter. In stems, the concentration of carbohydrates, includingmethyl glucoside andmyo-inositol markedly decreased before floweropening. In petals, contents of glucose, methyl glucoside andmyo-inositolalso decreased before flower opening, but those of fructose,sucrose and xylose did not. When glucose and methyl glucosidewere added to the vase water (4%) flower opening was clearlypromoted; this was accompanied by an increase in methyl glucosideand fructose concentrations in petals. On the contrary,myo-inositolinhibited flower opening, and this was accompanied by an increaseinmyo-inositol and xylose concentrations in petals. These resultssuggest that methyl glucoside and/or its metabolites are transportedinto the petal cells, thereby lowering the osmotic water potentialand promoting flower opening.Myo-inositol is not readily metabolized,and exogenousmyo-inositol given at a high concentration mayact as an extracellular osmolyte, which inhibits water uptakeand flower opening.Copyright 1999 Annals of Botany Company Cut flowers, methyl glucoside,myo-inositol,Rosa hybrida,soluble carbohydrate.  相似文献   

2.
The effects of postharvest pretreatments on vase life, keeping quality and carbohydrate concentrations in cut sweet pea (Lathyrus odoratus L.) flowers were investigated. Compared to the control, all treatments promoted floret quality and extended longevity. The cut flowers held in the solution containing sucrose + 8-hydroxyquinoline (Suc+HQS) was more effective in promoting absorption rate, achieved greater maximum fresh mass, had better water balance for a longer period, extended the vase life (up to 17 d), and delayed degradation of chlorophylls. The same treatment also enhanced the concentration of soluble carbohydrates in the petals and stems and leaf chlorophyll (Chl) content, whereas it was lowest in silver thiosulphate (STS) treatment. However, concentrations of anthocyanin in the petals were higher for treatment with sucrose or STS plus sucrose than in control or STS alone treatments. Our results suggest that pulse treatment with HQS plus sucrose for 12 h is the most effective for improving pigmentation and use as a commercial cut flower preservative solution to delay flower senescence, enhance quality, and prolong the vase life of sweet pea. The results also showed that soluble carbohydrate concentration in petals and stems is an important factor in determining the vase life of sweet pea flowers.  相似文献   

3.
Petal abscission was studied in roses (Rosa hybrida L.), cvs.Korflapei (trade name Frisco), Sweet Promise (Sonia) and CaraMia (trade name as officially registered cultivar name). Unlikeflowers on plants in greenhouses, cut flowers placed in waterin the greenhouse produced visible symptoms of water stress,depending on the weather during the experiment and on the cultivar.Cut Frisco roses showed no visible signs of water stress andthe time to petal abscission was as in uncut flowers. In Soniaroses the symptoms of water stress varied from mild to severe,and the number of flowers in which the petals abscised variedfrom 100% (mild stress) to 0% (severe stress). An antimicrobialcompound in the vase water of Sonia roses, or removal of theleaves, alleviated the symptoms of water stress and increasedthe number of stems in which the petals abscised. Cut Cara Miaroses showed severe symptoms of water stress in all experimentsand petal abscission was found in only a few flowers, even whenthe stems were placed at 20 °C and low photon flux (15 µmolm-2s-1). Abscission in Sonia and Cara Mia roses was low or absentwhen the water potential of the leaves reached values below-2.0 MPa within the first 5 d of the experiment; such low valueswere not reached in Frisco roses. Addition of sucrose to the vase solution, together with an effectiveantimicrobial compound, had no effect on the time to petal abscission,at any light intensity. Placing flowers in far-red light alsohad no effect on abscission, compared with flowers placed inred light or white light of the same photon fluence. It is concluded that petal abscission in the rose cultivarsstudied is not affected by their water status unless the plantsreach a low water potential (about -2 MPa) early on during vaselife. Petal abscission is not inhibited by low light intensitynor affected by the Pr/Pfr ratio. Abscission; light intensity; petals; phytochrome; Rosa hybrida L.; rose; sugars; water potential  相似文献   

4.
Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post‐harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound‐induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem‐end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1–2 days post‐wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control.  相似文献   

5.
Pseudomonas putida cells were unable to pass the inter-vessel pit membranes of the xylem system of cut roses ( Rosa hybrida cv. 'Sonia'). It was further shown that (1) the number of bacteria which infiltrated into the xylem vessels decreased with increased distance between the cutting point and sampling point; (2) the number of bacteria which infiltrated into the open xylem vessels increased with time and with increasing numbers of pseudomonas cells; (3) only a minor part of the pseudomonas cells homogeneously suspended in the vase solution was able to infiltrate into the xylem vessels of the cut roses up to a distance from the cutting point of > 1 cm; and (4) even low levels of infiltrated pseudomonas cells could be demonstrated by measurements of the water conductivity of stem segments. More research is needed to reveal which mechanisms (e.g. gumnosis) might have contributed, directly or indirectly, to the prevention of further infiltration of bacterial particles into the cut open vascular system of the Rosa cultivar.  相似文献   

6.
Relationship between cavitation and water uptake in rose stems   总被引:1,自引:0,他引:1  
Cavitation in rose stems ( Rosa hybrida L.) was assessed in both intact plants and excised flowers, by measurement of ultrasonic acoustic emissions at the stem surface and determination of the air-conductivity of 2.5-cm segments that were attached at one end to air at low pressure (0.01 MPa). On sunny days the stems of intact rose plants showed acoustic emissions and conductivity to air, starting early in the morning. In Cara Mia and Sonia rose plants the cavitations were repaired during the late afternoon; in Madelon plants this repair only occurred overnight. Water flow was seriously impaired in stems of Cara Mia roses cut around midday, on sunny days.
During dehydration of cut roses in air the onset of a high rate of acoustic emissions coincided with a low rate of water uptake when stems were subsequently placed in water. High emission frequency occurred after 2.4 ± 0.7 h, 6.8 ± 4.3 h and 19.8 ± 9.0 h of exposure to air in Cara Mia, Madelon and Sonia roses, respectively. A low rate of water uptake in excised stems placed in water was found after 3–4, 9–12 and 24–36 h of desiccation in air, respectively. The onset of the high emission frequency corresponded with a water potential of −1.7, −2.9 and −3.8 MPa in the three cultivars, respectively.
It is concluded that a high number of cavitations may occur in noncut stems of rose plants, leading to low water uptake immediately after excision, depending on the weather and the cultivar, and that the low rate of water uptake after a period of dry storage, among the three rose cultivars investigated, is correlated with the presence of a high number of cavitated xylem elements.  相似文献   

7.
四种简易切花保鲜剂比较试验   总被引:1,自引:0,他引:1  
以瓶插寿命、鲜重及水分平衡值变化为指标,探讨由蔗糖、食盐、酒精、阿司匹林、食醋、青霉素等日常用品组成的四种配方的简易保鲜剂,对香石竹、非洲菊和玫瑰鲜切花的保鲜效果。结果表明,四种保鲜剂中,以配方B(1 L水+10 g蔗糖+10 g食盐+10 ml酒精)保鲜效果较为理想,能改善花枝的吸水状况,延长鲜切花水分平衡时间,从而延长鲜切花瓶插寿命。  相似文献   

8.
The Water Balance of Cut Rose Flowers   总被引:2,自引:0,他引:2  
A sharp decline in water potential of petal tissue associated with wilting of cut rose flowers is described. Such a decline did not develop in senescing intact flowers. A circadian rhythm in water absorption by cut flowers was observed. The decline in fresh weight observed in the last phase of the vase life of cut flowers occurred earlier in a short-lived cultivar than in a longer-lived one. A decline in potential conductivity to water was observed with time in stems of cut roses. Concomitantly cellulase activity increased after cutting. Flowers held in cellulase solution wilted earlier than the controls. However, no difference was found in these two parameters between two cultivars differing in their longevity. The difference in longevity between the two cultivars was large especially under conditions promoting high transpiration rates, and was narrowed when flowers were either held in mild conditions, or the leaves were stripped off. Although stomates were equally open in intact flowers of the two cultivars, in cut flower shoots of the short-lived cultivar stomates were more widely open. In accordance transpiration rates were higher, and wilting occurred earlier in the short-lived cultivar than in the long-lived one. It is concluded that the earlier wilting of cut flowers of the short-lived cultivar is mainly due to lower ability to close stomates in response to water stress conditions, and not to earlier formation of vascular blockage.  相似文献   

9.
Both export of 14C from the source leaves of roses (Rosa × hybrida cv. Golden Times) and import of 14C to the petals were reduced by plant exposure to low night temperature. However, the import was affected to a greater extent than the export. During all stages of flower bud development the concentration of reducing sugars in petals of roses grown at reduced night temperature was lower than in petals of plants grown at higher night temperature. There was no significant difference in starch content in response to the night temperature, and the content of starch decreased toward complete flower bud opening. The concentration of sucrose in flowers at the low night temperature remained low during all stages of flower bud development, while at the high night temperature the concentration of sucrose increased during flower bud development, reaching a peak at the stage when petals start to unfold. At both temperatures the concentration of sucrose declined at complete flower opening. The activity of sucrose synthase (EC 2.4.1.14) was inhibited by low temperature in young rose shoots more than in the petals, while the activity of acid invertase (EC 3.2.1.26) was affected similarly in both tissues by the temperature treatments.  相似文献   

10.
Micro-organisms at the cut surface and in xylem vessels of rose stems   总被引:2,自引:2,他引:0  
Stems of cut rose flowers ( Rosa hybrida L. cv. 'Sonia') were placed in water to study the development of a population of micro-organisms at the cut surface and in the xylem vessels. The cut surface became covered with bacteria within 2 d of vase life. The bacteria were accompanied by an amorphous substance which was apparently bacterial slime. After 7 d of vase life many fungal hyphae were also found at the cut surface. Inside the xylem vessels the bacteria were often clustered at the inter-vessel pits. After 4 d of vase life most of the vessels that had been opened by cutting contained bacteria. Only a few xylem elements, located several centimeters from the cut surface, contained an amorphous substance. A few fungal hyphae were observed inside the xylem vessels. No yeasts were found, either at the cut surface or inside the xylem. Pseudomonas species accounted for more than 70% of the total bacterial population of the cut surface and the xylem vessels, and Enterobacter species (mainly Ent. agglomerans ) for less than 10%. Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Citrobacter and Flavobacterium were occasionally observed.  相似文献   

11.
W.G. VAN DOORN AND K. D'HONT. 1994. Flowering stems of four rose cultivars (Sonia, Madelon, Jacaranda and Frisco) were placed in aqueous suspensions of bacteria at 104 and 108 colony-forming units (cfu) ml-1 for 24 h at 5C, then stored dry or held in water for 24 h at 8C and subsequently placed in vase-water at 20C. The effects of these treatments on vase-water uptake were similar to the effects on flower opening. In Sonia and Madelon roses flower opening was negatively affected both by 108 cfu ml-1 of bacteria and by dry storage. No effect was found at 104 cfu ml-1, but this concentration had a detrimental effect on flower opening when combined with dry storage. Although flower development in Jacaranda roses was not affected by the bacteria treatments it was inhibited by dry storage. This inhibition was progressively greater when the stems had previously been pulse-treated with a larger number of bacteria. Flower opening in Frisco roses was not affected by even the highest concentration of bacteria, nor by the period of dry storage. It is concluded that placing flowers in water containing bacteria (up to 108 cfu ml-1) may not always have a negative effect on flower development in cut rose flowers but, together with the effects of dry storage, the presence of even a low number of exogenous bacteria (104 cfu ml-1) inhibits the development in several cultivars. Such bacterial counts are nearly always found in samples of water used for standing roses during distribution to the consumers.  相似文献   

12.
表油菜素内酯对月季切花保鲜作用的研究   总被引:12,自引:1,他引:11  
本文初步探讨了表油菜素内酯(epiBR)对瓶插月季切花的保鲜作用。与对照(蒸馏水)和基本液(2%蔗糖+500mgL-1柠檬酸+250mgL-8-羟基喹啉+25mgAgNO3)相比,经epiBR处理(基本液+0.1mgL-1epiBR)的月季切花花枝坚挺,蓝变延迟,瓶插寿命延长1-1.5倍。测定有关生理指标表明,epiBR处理对月季切花瓶插花枝前期鲜重的增加及后期的保持有明显作用。并显著延缓花瓣和叶片质膜相对透性的增加,还能使瓶插前期花瓣还原糖含量增加。epiBR处理对花瓣蛋白质和叶片叶绿素含量变化无明显影响,而对花瓣花青素水平下降有轻微的促进作用。  相似文献   

13.
Cut sweet pea flowers were put in vase water containing 200 mg l–1 8-hydroxyquinoline sulfate (HQS), and 100 g l–1 sucrose was added to the solution during the first 24 h (initial treatment), from the 24th h on (late treatment) or throughout the experimental period (continuous treatment). The vase life of the florets in the control (with no sucrose added), initial-, late-, and continuous-treatment groups were 2.8, 6.0, 5.0 and 8.0 days, respectively. Climacteric ethylene production of the florets was the earliest in the control group followed by the late-, initial- and continuous-treatment groups, in this order. The concentrations of glucose, fructose and s ucrose at the 2nd day and later were the highest in the continuous-treatment group followed by the initial-treatment, late-treatment and control group, in this order. Thus, the correlation between sugar concentrations in petals and vase life was positive, whereas that between the sugar concentrations and ethylene production was negative. These results suggest that sugar concentration in petals affects the vase life of cut sweet pea flowers through ethylene production.  相似文献   

14.

Recent studies indicate that hydrogen sulfide (H2S) plays various physiological roles in plants. However, whether H2S participates in the postharvest senescence in cut flowers remains unknown. In this study, the regulatory roles of H2S during the senescence of cut roses (Rosa hybrida L.) and chrysanthemums (Dendranthema morifolium Ramat.) were investigated. The results showed that compared with the control (distilled water), the 50 μM sodium hydrosulfide (NaHS) treatment, a H2S donor, extended the vase life of cut roses to 9.3 days and their flower diameter also showed an increment of 22.7% after 4 days treatment. Treatments with 30 μM NaHS significantly prolonged the vase life of cut chrysanthemums to 8.87 days and the flower diameter was 13.21% longer than the control on day 6. Additionally, results also indicated that a 30 or 50 μM NaHS treatment effectively decreased the rate of fresh weight changes and O2− production and H2O2 content, increased the levels of soluble sugar, soluble protein, anthocyanin and carotenoid, and enhanced the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase and ascorbate peroxidase) of cut roses and chrysanthemums in comparison with the control, implying that H2S might be involved in regulating the osmotic balance, antioxidant system and the degradation of nutrient and pigments. Altogether, H2S at proper doses might play an important role in improving the longevity and quality of cut roses and chrysanthemums by maintaining water balance, reducing the degradation of pigments and nutrient and enhancing antioxidant capacity.

  相似文献   

15.
Rosa hybrida L. is an important commercial cut flower. The vase life of this flower is usually short due to vascular occlusion. We assessed the effect of Nano-Silver (NS) and S-carvone in prolonging the vase life of R. hybrida L. cv. ‘Avalanche’ and ‘Fiesta’. Hence, an experiment involving the treatment with NS at 0, 50, 100, and 200 mgL 1 and S-carvone at 0, 0.25, 0.5, and 0.75 mgL 1 with 10 replicates was conducted. Applying NS pulse treatments increased vase life, water uptake rate, and fresh weight and reduced the number of bacteria, water loss, stomatal conductance and transpiration rate. However, S-carvone treatments did not have a positive effect on the vase-life parameters of cut rose flowers. NS pulse treatments increased relative fresh weight (RFW), and water uptake rate (WUR) and decreased water loss (WL) (%) by 10, 89 and 31% for cultivar ‘Avalanche’, compared to the controls, respectively. Application of 200 mgL 1 NS led to the highest vase life (18 days) for roses. The results show that NS increased vase life by suppressing stomatal opening, decreasing transpiration from leaves and inhibiting bacterial proliferation.  相似文献   

16.
玫瑰切花保鲜剂配方研究   总被引:1,自引:0,他引:1  
以蔗糖(S)、8-羟基喹啉(8-HQ)、柠檬酸(CA)为保鲜液的基本配方,分别加入CaCl2 、NaCl、Al2(SO4)3、CaCl2+KAl(SO4)2 组成四种保鲜液,进行玫瑰切花保鲜实验。对切花瓶插寿命、花径、水分平衡值、可溶性蛋白含量和还原糖含量进行分析。结果表明,各种配方保鲜液均能延长玫瑰切花的瓶插寿命、增大花径、改善切花水分代谢状况、降低切花蛋白质和还原糖的分解速度。其中,保鲜液2% S + 280 mg/L CA + 200 mg/L 8-HQ + 1% CaCl2的保鲜效果最好。  相似文献   

17.
The Japanese beetle, Popillia japonica Newman, feeds on the flowers and foliage of roses. Rosa x hybrida. Beetles attracted to roses land almost exclusively on the flowers. This study evaluated characteristics of rose flowers including color, size, petal count and fragrance, as well as height of plants and blooms within plant as factors in attractiveness to Japanese beetles. Artificial flowers that had been painted to match the spectral reflectance of real blooms were attached to potted nonflowering rose plants in the field and the number of beetles that landed on each model was recorded. More beetles landed on the yellow- and white-colored flower models than on the five other bloom colors that were tested. Large (15 cm diameter) yellow flower models attracted more beetles than did smaller (8 cm diameter) yellow models. There was no difference in beetle response to yellow flower models of the same size that differed in bloom complexity (i.e., number of petals). Experiments in which blooming rose plants were elevated above controls, or in which flower models were placed at different heights within plant canopies, failed to support the hypothesis that height per se accounts for beetles' attraction to flowers over leaves. Attractiveness of selected rose cultivars that varied in fragrance and flower color also was evaluated in the field. Yellow-flowered cultivars were more susceptible than those with red flowers, regardless of fragrance intensity as rated by breeders. Growing cultivars of roses that have relatively dark and small-sized blooms may have some benefit in reducing Japanese beetles' attraction to roses.  相似文献   

18.
以‘窄叶藤本月季花’( Rosa chinensis ‘Zhaiye Tengben Yuejihua’)ב月月粉’( R. chinensis ‘Old Blush’)杂交群体为材料, 分析其花瓣数量的分离特点, 对单瓣花与重瓣花的花芽分化过程进行观察, 并对花瓣、雄蕊及瓣化雄蕊进行表皮细胞超微结构的观察.结果显示...  相似文献   

19.
The effects of low temperature storage on the physiology of cut rose flowers ( Rosa hybridaL. cv. Mercedes) were studied. Extension of cold storage or increase in temperature (from 3 to 8°C) was accompanied by shortening of vase life and advancement of petal senescence, as reflected in an advance in the timing of the rise in ethylene production and an increase in membrane permeability (ion leakage). Although storage at a relative humidity (RH) of 65% reduced petal water content by 20% in comparison with flowers stored at 95% RH, it did not shorten vase life. The progression of petal senescence was measured during storage at 3°C and during aging at 22°C. Both ethylene production rates and membrane microviscosity measured by fluorescence depolarization increased with time at 3°C and at 22°C, but more slowly at 3°C. At 3°C membrane permeability measured by ion leakage did not increase. Following cold storage the rate of ethylene production in the petals was increased by up to eight times the rate in unstored flowers. Silver thiosulphate extended the vase life of both stored and fresh flowers equally by 2 days, but did not increase the life of stored flowers to that of treated fresh flowers. It is concluded that the primary effect of cold storage on roses is to slow down senescence and that the continued slow senescence leads to shorter vase life. The possible occurrence of sequential processes during senescence and the effects of temperature on these processes is discussed.  相似文献   

20.
Flowering depends upon long-distance transport to supply water for reproductive mechanisms to function. Previous physiological studies suggested that flowers operated uncoupled from stem xylem transport and received water primarily from the phloem. We demonstrate that the water balance of Southern magnolia (Magnolia grandiflora) flowers is regulated in a manner opposite from that of previously examined flowers. We show that flowers of Southern magnolia rely upon relatively efficient xylem hydraulic transport to support high water demand during anthesis. We measured rapid rates of perianth transpiration ranging from twice to 100 times greater than previous studies. We found that relatively efficient xylem pathways existed between the xylem and flower. Perianth hydraulic conductance and the amount of xylem to transpirational surface area ratios of flowers were both approximately one-third those measured for leafy shoots. Furthermore, we observed that perianth tissues underwent significant diurnal depressions in water status during transpiring conditions. Decreases in water potential observed between flowers and vegetative tissues were consistent with water moving from the stem xylem into the flower during anthesis. Xylem hydraulic coupling of flowers to the stem was supported by experiments showing that transpiring flowers were unaffected by bark girdling. With Southern magnolia being a member of a nearly basal evolutionary lineage, our results suggest that flower water balance represents an important functional dimension that influenced early flower evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号