首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A formaldehyde oxidase activity was found in cell-free extracts of methanol-grown yeast Candida boidinii. Loss of alcohol oxidase activity in a mutant, 48, led to loss of the formaldehyde oxidase activity, indicating that the same enzyme is probably responsible for both activities. This could be demonstrated with the purified alcohol oxidase which oxidizes, besides lower primary alcohols, formaldehyde to formate. The K m value for formaldehyde is 5.7 mM. It seems that alcohol oxidase is not implicated in formaldehyde oxidation in vivo.  相似文献   

2.
A catabolite repression-insensitive mutant of Candida boidinii A5, strain ADU-15, was investigated as to alcohol oxidase production and the production of cells exhibiting the maximum catalytic activity for formaldehyde production. The mutant strain ADU-15 showed higher cell productivity and higher alcohol oxidase activity when grown on mixed substrates (glucose-methanol), especially with a high concentration of glucose in the medium. Thus, even under substrate (glucose-methanol)-limited chemostat conditions, where the glucose concentration was low, partial derepression of alcohol oxidase by glucose in mutant strain ADU-15 was detected. The chemostat culture conditions with the glucose-methanol medium were optimized for alcohol oxidase production and the production of cells exhibiting the maximum catalytic activity for formaldehyde production, respectively. By means of chemostat culturing on mixed substrates, we improved the alcohol oxidase productivity 5.0-fold and the productivity of cells exhibiting the maximum catalytic activity for formaldehyde production 3.8-fold, in comparison with the parent strain chemostat cultured with methanol as the single substrate.  相似文献   

3.
We isolated a mutant strain of a methanol-utilizing yeast, Candida boidinii S2, which shows improved formaldehyde productivity. The procedure for mutant screening consisted of; 1) induction of alcohol oxidase on a methanol-plate, 2) catabolite inactivation of alcohol oxidase on a glucose-plate, and 3) visualization of alcohol oxidase activity in a colony. One of the mutants, strain AOU-1, showed 1.7 times higher formaldehyde productivity and a higher growth rate on methanol than the parent strain. The high formaldehyde productivity was proved to be due to the high alcohol oxidase activity. No qualitative change of the enzyme was detected between the parent strain and mutant strain AOU-1. The high activity of mutant strain AOU-1 could be attributed to a quantitative change and a change in the rate of enzyme synthesis. Catabolite repression and inactivation of alcohol oxidase in the mutant were also discussed.  相似文献   

4.
The oxidation of methanol and formaldehyde was investigated by using some combination systems of alcohol oxidase, catalase, which were purified from Candida N-16, and hydrogen peroxide. The activity of alcohol oxidase was irreversibly inhibited when the enzyme was incubated with 2.5 mm hydrogen peroxide for 15 min. However, the oxidation of methanol to formaldehyde by alcohol oxidase in the presence of catalase was extremely promoted by the addition of 30 mm hydrogen peroxide. Alcohol oxidase could oxidize not only methanol but also formaldehyde as follows: HCHO + 02 + H2O→HCOOH + H2O2. The formaldehyde oxidizing activity was inhibited by hydrogen peroxide. The system containing alcohol oxidase and catalase appears to be the entity of the oxygen-dependent oxidation system of formaldehyde previously found in the cell-free extract of the yeast.  相似文献   

5.
Degradation of microbiodies in the methanolutilizing yeastCandida boidinii was mainly studies by electron microscopical observation. The yeast cells precultured on methanol medium contained five to six microbodies per section and showed high activities of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase. When the precultured cells were transferred into an ethanol medium the number of microbodies and concomitantly the activities of alcohol oxidase and catalase decreased. After 6 h of cultivation microbodies were hardly detected. Also the activity of alcohol oxidase was not measurable and catalase activity was reduced to one tenth, whereas the activities of formaldehyde dehydrogenase and formate dehydrogenase decreased only to about 70%. Experiments with methanol-grown cells transferred into an ethanol medium without nitrogen source indicated that the inactivation of alcohol oxidase and catalase does not require protein synthesis. However, the reappearance of these enzymes is presumably due to de novo protein synthesis as shown by experiments with cycloheximide.  相似文献   

6.
Yeast microbodies containing FAD-dependent alcohol oxidase, catalase and D-amino acid oxidase were isolated from methanol-grown cells of Kloeckera sp. 2201 and immobilized intact in matrices formed by a short-time illumination of photo-crosslinkable resin oligomers. The relative activities of catalase, alcohol oxidase and D-amino acid oxidase of the gel-entrapped microbodies were 36, 76 and 31% respectively as compared with those of free microbodies. Immobilization enhance d the stability of catalase to a certain degree, but not that of alcohol oxidase. The pH/activity profiles of catalase and alcohol oxidase of the entrapped organelles showed more narrow pH optima than those of the free counterparts. D-Amino acid oxidase in immobilized microbodies showed a somewhat higher Km value for D-alanine than that in free ones. Immobilized microbodies oxidized two moles of methanol to form two moles of formaldehyde with consumption of one mole of molecular oxygen. Addition of 3-amino-1,2,4-triazole, an inhibitor of catalase, reduced the formation of formaldehyde to half the amount without change in the amount of oxygen consumed, indicating the synergic action of alcohol oxidase and catalase in methanol oxidation in the microbodies of living yeast cells.  相似文献   

7.
Alcohol oxidase (alcohol:oxygen oxidoreductase) was crystallized from a methanolgrown yeast, Pichia sp. The crystalline enzyme is homogenous as judged from polyacrylamide gel electrophoresis. Alcohol oxidase catalyzed the oxidation of short-chain primary alcohols (C1 to C6), substituted primary alcohols (2-chloroethanol, 3-chloro-1-propanol, 4-chlorobutanol, isobutanol), and formaldehyde. The general reaction with an oxidizable substrate is as follows: Primary alcohol + O2 → aldehyde + H2O2 Formaldehyde + O2 → formate + H2O2. Secondary alcohols, tertiary alcohols, cyclic alcohols, aromatic alcohols, and aldehydes (except formaldehyde) were not oxidized. The Km values for methanol and formaldehyde are 0.5 and 3.5 mm, respectively. The stoichiometry of substrate oxidized (alcohol or formaldehyde), oxygen consumed, and product formed (aldehyde or formate) is 1:1:1. The purified enzyme has a molecular weight of 300,000 as determined by gel filtration and a subunit size of 76,000 as determined by sodium dodecyl sulfate-gel electrophoresis, indicating that alcohol oxidase consists of four identical subunits. The purified alcohol oxidase has absorption maxima at 460 and 380 nm which were bleached by the addition of methanol. The prosthetic group of the enzyme was identified as a flavin adenine dinucleotide. Alcohol oxidase activity was inhibited by sulfhydryl reagents (p-chloromercuribenzoate, mercuric chloride, 5,5′-dithiobis-2-nitrobenzoate, iodoacetate) indicating the involvement of sulfhydryl groups(s) in the oxidation of alcohols by alcohol oxidase. Hydrogen peroxide (product of the reaction), 2-aminoethanol (substrate analogue), and cupric sulfate also inhibited alcohol oxidase activity.  相似文献   

8.
Summary A novel process for the production of formic acid from methanol has been developed that involves the coupled reactions of the three enzymes, alcohol oxidase, catalase and formaldehyde dismutase. In this process, methanol is oxidized to formaldehyde by alcohol oxidase and catalase, followed by the formaldehyde dismutase reaction that leads to the formation of methanol and formic acid. Ultimately, the substrate methanol (100 to 200 mM) is completely converted to formic acid, by the recycling of the consecutive enzyme reactions.  相似文献   

9.
The regulation of the synthesis of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase was investigated in the methanol-utilizing yeast Hansenula polymorpha. The organism was found to synthesize immunologically identical alcohol oxidases during growth on glycerol and methanol. Growth on glycerol, however, was not dependent on the alcohol oxidase, as was shown with a mutant without alcohol oxidase protein. Similarly it was shown with a catalase activity negative mutant that high catalase activity during growth on glycerol was not a prerequisite for the utilization of this substrate, though absolutely required for growth on methanol.Experiments were conducted with mixed substrates to study the influence of methanol on alcohol oxidase synthesis. In batch cultures, growth on ribose plus methanol resulted in an enhanced rate of alcohol oxidase synthesis as compared to ribose alone. In continuous cultures, (D=0.1 h-1) addition of methanol to glycerol-, glucose-, or sorbose-limited cultures gave rise to increased alcohol oxidase activity of up to 20 U/mg, which is about by 2 times higher than the specific activity used for growth on methanol alone. The increase in specific activity of the dissimilatory enzymes on the mixed substrates is partly due to methanol per se, as was shown by a mutant unable to dissimilate or assimilate methanol.  相似文献   

10.
Abstract Three types of Hansenula polymorpha 356 (leu) mutants unable to grow on methanol were isolated and characterized. The first type of mutants, M8, M14, and M41, were deficient in the alcohol oxidase activity (MOX). The dihydroxyacetone synthase activity appeared after incubation of the strains in the medium with glycerol and methylamine but not with methanol. One of the mutants (W218) with the reduced activity of alcohol oxidase lacked the formate dehydrogenase activity (FDH). All these mutants produced a low level of extracellular formaldehyde from methanol.
The second and third types of mutants were deficient in dihydroxyacetone synthase (DAS; 349, 409, 450), and dihydroxyacetone kinase (DAK; 4D1, 4D3, 4D16) activities, respectively. DAK mutants showed both the high activities of alcohol oxidase and NADH-dependent reduction of CH2O catalyzed by alcohol dehydrogenase. This indicated the possibility that NADH, generated in the oxidation of formaldehyde to CO2, may be oxidized by molecular oxygen via a futile cycle composed of the alcohol oxidase and alcohol dehydrogenase.  相似文献   

11.
Methylotrophic yeasts induce large peroxisomes when grown on methanol. The recent ability to stabilize and isolate these peroxisomes at pH 5.5 has led to the demonstration that two polypeptides comprise the bulk of the peroxisome of Candida boidinii, alcohol oxidase, and a 79-kDa species, determined by sodium dodecyl sulfate-polyacrylamide electrophoresis (Goodman, J.M., Scott, C.W., Donahue, P.N., and Atherton, J.P. (1984) J. Biol. Chem. 259, 8485-8493). The 79-kDa peroxisomal protein is now identified as dihydroxyacetone synthase, the first enzyme in the assimilatory pathway of formaldehyde utilization. This identification is based on several criteria: The enzyme activity is mainly in a particulate fraction at pH 5.5 but not at pH 8.0. It copurifies with alcohol oxidase and catalase on sucrose gradients. The 79-kDa protein behaves as a 135,000-kDa dimer on gel filtration, similar to the published behavior of the enzyme. The specific activity of dihydroxyacetone synthase in the pure 79-kDa preparation (3.20 units/mg of protein) is close to that reported for the purified enzyme (3.88 units/mg of protein). Antibodies against dihydroxyacetone synthase were used to show that its synthesis, induction, and assembly are similar to that of alcohol oxidase. Neither contains a detectable cleaved leader sequence and both are assembled post-translationally. The localization of dihydroxyacetone synthase to the peroxisome may influence the regulation of the two pathways of formaldehyde utilization and may protect the cell from damage by formaldehyde.  相似文献   

12.
A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.  相似文献   

13.
1. Alcohol oxidase (alcohol:oxygen oxidoreductase) was purified 22-fold from the brown rot fungus Poria contigua. The final enzyme preparation was homogeneous as judged by polyacrylamide gel electrophoresis, and by sedimentation in an ultracentrifuge. The molecular weight was calculated to be 610000 +/- 5000 from sedimentation equilibrium experiments. Electrophoresis in sodium dodecylsulfate gels and electron microscopic analysis indicate that the enzyme is an octamer composed of eight probably identical subunits, each having a molecular weight of 79 000. The enzyme contains eight mol FAD/mol as the prosthetic group. 2. This alcohol oxidase oxidizes not only methanol but also lower primary alcohols (C2-C4), 2-propin-1-ol and formaldehyde. The apparent Km value for methanol is 0.2 mM, and that for formaldehyde 6.1 mM. Sodium azide was found to be a competitive inhibitor with respect to methanol. 3. The enzyme from the fungus Poria contigua is immunologically different from the alcohol oxidase isolated from the methanol-utilizing yeast Candida boidinii. Furthermore antiserum raised against this enzyme did not cross-react with the alcohol oxidase from the white rot fungus Polyporus obtusus.  相似文献   

14.
We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.  相似文献   

15.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

16.
Microbodies, designated as peroxisomes because of their enzyme complement, have been isolated from methanol-grown cells of Candida boidinii. Spheroplast lysates were separated on non-continuous Ficoll density gradients, resulting in a mitochondrial fraction and a peroxisome fraction. Estimates of purity using the mitochondrial enzyme markers suggested that the contamination of mitochondria in the peroxisome fraction was about 2-3%. As shown by electron microscopy the peroxisomes were 0.4-0.6 mum in diameter and contained crystalloid inclusions. Alcohol oxidase and catalase, which catalyse the oxidation of methanol to formaldehyde in Candida boidinii, could be localized within the peroxisomes. Gel-electrophoretic studies of the peroxisome fraction demonstrated that it contained only two predominant protein bands consistent with alcohol oxidase and catalase. No alcohol oxidase and catalase activity was found in mitochondria.  相似文献   

17.
Two types of biosensors selective to formaldehyde have been developed on the basis of pH-sensitive field effect transistor as a transducer. Highly or partially purified alcohol oxidase (AOX) and the permeabilised cells of methylotrophic yeast Hansenula polymorpha (as a source of AOX) have been used as sensitive elements. The response time in steady-state measurement mode is in the range of 10-60 s for the enzyme-based sensors and 60-120 s for the cell-based sensor. When measured in kinetic mode the response time of all biosensors developed was less than 5 s. The linear dynamic range of the sensor output signals corresponds to 5-200 mM formaldehyde for highly and partially purified alcohol oxidase, and 5-50 mM formaldehyde for the cells. The operational stability of the biosensors is not less than 7 h, and the relative standard deviation of intra-sensor response is approximately 2 and 5% for the enzyme- and cell-based sensors, respectively. When stored at 4 degrees C, the enzyme and cell sensor responses have been found stable for more than 60 and 30 days, respectively. Both types of biosensors demonstrate a high selectivity to formaldehyde with no potentiometric response to primary alcohols, including methanol, or glycerol and glucose. The possible reasons of such unexpected high selectivity of AOX-based FET-sensors to formaldehyde are discussed. The influence of the biomembrane composition and the effect of different buffers on the sensor response to formaldehyde are also discussed.  相似文献   

18.
A formate oxidase activity was found in the crude extract of a formaldehyde-resistant fungus isolated from soil. The fungus was classified and designated as Aspergillus nomius IRI013, which could grow on a medium containing up to 0.45% formaldehyde and consumed formaldehyde completely. The specific activity of formate oxidase in the extract of the fungus grown on formaldehyde was found to be considerably higher than that in the extracts of the fungus grown on formate and methanol. Formate oxidase from the fungus grown on formaldehyde was purified to homogeneity. The enzyme had a relative molecular mass of 100000 and was composed of two apparently identical subunits that had a relative molecular mass of 59000. The enzyme showed the highest activity using formate as substrate. Hydrogen peroxide was formed during the oxidation of formate. The Michaelis constant for formate was 15.9 mM; highest enzyme activity was found at pH 4.5-5.0. The enzyme activity was strongly inhibited by NaN(3), p-chloromercuribenzoate and HgCl(2).  相似文献   

19.
Profuse appearance of microbodies was observed in the cells of methanol-utilizing yeasts in connection with the enhanced catalase activity. These microbodies were isolated successfully by means of sucrose gradient centrifugation from the methanol-grown cells of Kloeckera sp. no. 2201. Localization of a flavin-dependent alcohol oxidase as well as characteristic microbody enzymes (catalase and D-amino acid oxidase) were ascertained in the isolated microbodies, whereas formaldehyde and formate dehydrogenases were detected in the cytoplasmic region. Localization of catalase in the isolated microbody was also demonstrated by the cytochemical technique with 3,3'-diaminobenzidine.  相似文献   

20.
A simple, inexpensive microdistillation device is described for capturing methanol or formaldehyde as end products of biochemical reactions or in environmental samples. We demonstrate that the microdistillation protocol, coupled with the use of alcohol oxidase and the formaldehyde-sensitive reagent Purpald (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole), serves as a quick and inexpensive alternative to chromatographic and mass spectrometer analyses for determining if formaldehyde or methanol is a product of reactions that contain substances that interfere with the Purpald reaction. These techniques were used to affirm formaldehyde as the end product of the dicamba monooxygenase-catalyzed O-demethylation of the herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号