首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell secretion has come of age, and a century old quest has been elegantly solved. We have come a long way since earlier observations of what appeared to be 'fibrillar regions' at the cell plasma membrane, and electrophysiological studies suggesting the presence of 'fusion pores' at the cell plasma membrane where secretion occurs. Finally, the fusion pore or 'porosome' has been discovered, and its morphology and dynamics determined at nm resolution and in real time in live secretory cells. The porosome has been isolated, its composition determined and it has been both structurally and functionally reconstituted in artificial lipid membrane. The discovery of the porosome as the universal secretory machinery in cells and the discovery of the molecular mechanism of vesicular content expulsion during cell secretion have finally enabled a clear understanding of this important cellular process. This review outlines the fascinating and exciting journey leading to the discovery of the porosome, ultimately solving one of the most difficult, significant, and fundamental cellular process -cell secretion.  相似文献   

2.
Discovery of the 'porosome'; the universal secretory machinery in cells   总被引:1,自引:0,他引:1  
The release of neurotransmitters at the nerve terminal for neurotransmission, release of insulin from beta-cells of the endocrine pancreas for regulating blood glucose levels, the release of growth hormone from GH cells of the pituitary gland to regulate body growth, or the expulsion of zymogen from exocrine pancreas to digest food, are only a few examples of key physiological processes made possible by cell secretion. It comes as no surprise that defects in cell secretion are the cause for numerous diseases, and have been under intense investigation for over half century. Only in the last decade, the molecular machinery and mechanism of cell secretion has become clear. Cell secretion involves the docking and transient fusion of membrane-bound secretory vesicles at the base of plasma membrane structures called porosomes, and the regulated expulsion of intravesicular contents to the outside, by vesicle swelling. The discovery of the porosome in live cells, its morphology and dynamics at nanometer resolution and in real time, its isolation, its composition, and its structural and functional reconstitution in lipid membrane, are complete. The molecular mechanism of secretory vesicle fusion at the base of porosomes, and the regulated expulsion of intravesicular contents during cell secretion, are also resolved. In this minireview, the monumental discovery of the porosome, a new cellular structure at the cell plasma membrane, is briefly discussed.  相似文献   

3.
This past decade has witnessed the publication of a flurry of scientific papers and reports on the subject of cell secretion, following discovery of a permanent plasma membrane structure termed 'porosome' and its determination as the universal secretory machinery in cells. This discovery has led to a paradigm shift in our understanding of the secretory process, demonstrating that membrane-bound secretory vesicles transiently dock and fuse at the porosome base to release their contents to the cell exterior. The regulated release of intravesicular contents during cell secretion is governed by dilation of the porosome opening to the outside, and the extent of vesicle swelling. In agreement, a great number of articles have been written and studies performed, which are briefly discussed in this article.  相似文献   

4.
Type VI secretion: a beginner's guide   总被引:5,自引:0,他引:5  
  相似文献   

5.
6.
The yeast Saccharomyces cerevisiae is a common model organism for biological discovery. It has become popularized primarily because it is biochemically and genetically amenable for many fundamental studies on eukaryotic cells. These features, as well as the development of a number of procedures and reagents for isolating protein complexes, and for following macromolecules in vivo, have also fueled studies on nucleo-cytoplasmic transport in yeast. One limitation of using yeast to study transport has been the absence of a reconstituted in vitro system that yields quantitative data. However, advances in microscopy and data analysis have recently enabled quantitative nuclear import studies, which, when coupled with the significant advantages of yeast, promise to yield new fundamental insights into the mechanisms of nucleo-cytoplasmic transport.  相似文献   

7.
The rates at which cells secrete peptides and proteins must on average equal their rate of synthesis. This basic equality has unanticipated and seemingly categorical negative consequences for the vesicle theory of protein secretion. This is because the transport mechanisms it proposes, such as the budding and fusion of small vesicles and secretion by exocytosis, are not capable of balancing forces. What follows is an account of the analysis that leads to this conclusion.  相似文献   

8.
Membrane Structure and Function   总被引:1,自引:0,他引:1  
An understanding of the biochemical basis of membrane function is an important goal of present day biology. In this paper, a biochemical approach to the problem of the specific transport of sugars across the membrane of Escherichia coli is discussed. A new biochemical model for lactose transport system in this organism is presented, in which a specific membrane protein (M protein) plays the role of the sugar carrier. Experiments which have led to the discovery of such a protein, its specific labeling, and partial purification are briefly reviewed.  相似文献   

9.
C. elegans has long been used as an experimentally tractable organism for discovery of fundamental mechanisms that underlie metazoan cellular function, development, neurobiology, and behavior. C. elegans has more recently been exploited to study the interplay of environment and genetics on lipid storage pathways. As an experimental platform, C. elegans is amenable to an extensive array of forward and reverse genetic, a variety of “omics” and anatomical approaches that together allow dissection of complex physiological pathways. This is particularly relevant to the study of fat biology, as energy balance is ultimately an organismal process that involves behavior, nutrient digestion, uptake and transport, as well as a variety of cellular activities that determine the balance between lipid storage and utilization. C. elegans offers the opportunity to dissect these pathways and various cellular and organismal homeostatic mechanisms in the context of a genetically tractable, intact organism.  相似文献   

10.
11.
在过去20年里,斑马鱼已成为一种重要的模式脊椎动物,在发育、遗传、免疫、肿瘤和毒理等诸多研究领域中被广泛应用。近年来,斑马鱼作为活体模型越来越多地应用于某些生物学过程的药物筛选。通过斑马鱼初步筛选,在药物研发初期可确定化合物的生物学活性、毒性以及副作用等。最近的研究还发现,斑马鱼不仅用于新药筛选,还可用于药物结构的优化。本文重点介绍斑马鱼在新药发现中的应用。  相似文献   

12.
Secretion and membrane fusion are fundamental cellular processes involved in the physiology of health and disease. Studies within the past decade reveal the molecular mechanism of secretion and membrane fusion in cells. Studies reveal that membrane-bound secretory vesicles dock and fuse at porosomes, which are specialized plasma membrane structures. Swelling of secretory vesicles result in a build-up of intravesicular pressure, which allows expulsion of vesicular contents. The discovery of the porosome, its isolation, its structure and dynamics at nm resolution and in real time, its biochemical composition and functional reconstitution, are discussed. The molecular mechanism of secretory vesicle fusion at the base of porosomes, and vesicle swelling, have been resolved. With these findings a new understanding of cell secretion has emerged and confirmed by a number of laboratories.  相似文献   

13.
Polarized growth, secretion of exoenzymes, organelle inheritance, and organelle positioning require vectorial transport along cytoskeletal elements. The discovery of molecular motors and intensive studies on their biological function during the past 3 years confirmed a central role of these mechanoenzymes in morphogenesis and development of yeasts and filamentous fungi. Saccharomyces cerevisiae proved to be an excellent model system, in which the complete set of molecular motors is presumed to be known. Genetic studies combined with cell biological methods revealed unexpected functional relationships between these motors and has greatly improved our understanding of nuclear migration, exocytosis, and endocytosis in yeasts. Tip growth of elongated hyphae, compared to budding, however, does require vectorial transport over long distances. The identification of ubiquitous motors that are not present in yeast indicates that studies on filamentous fungi might be helpful to elucidate the role of motors in long-distance organelle transport within higher eukaryotic cells. Copyright 1998 Academic Press.  相似文献   

14.
The total active transport of chloride ions across the gastric mucosa can be considered as the sum of two fractions; an acidic one which is equivalent to the acid secreted, and an electromotive one which accounts for the electric energy generated by the gastric mucosa. In the present studies, the relationship between this electromotive chloride transport and acid secretion has been investigated, using specific inhibitors. The rate of electromotive chloride transport was found to be essentially unaffected by changes in the rate of acid secretion, and also by inhibition of acid secretion by thiocyanate. On the other hand, diamox, in combination with histamine, was shown to depress or abolish the gastric electromotive force and to inhibit partially the total chloride transport, while acid was secreted at an almost normal rate. This kind of inhibition is undefined as to its mechanism but seems to be more specific for the gastric chloride transport than any other inhibitor known. It is concluded that acid secretion and electromotive chloride transport involve two different mechanisms, and are not absolutely essential for each other. The present results do not support the view that carbonic anhydrase is essential for acid secretion. They rather suggest an important function of this enzyme in the mechanism of active chloride transport.  相似文献   

15.
16.
Leuconostoc mesenteroides Y105 and L. mesenteroides FR52 produce both mesentericin Y105 and B105, in equal amounts. The mesentericin operons of L. mesenteroides FR52 and Y105 which are involved in mesentericin Y105 and B105 production, were both sequenced and compared. Differences were limited to the two genes, mesD and mesE, which encode the dedicated transport system of mesentericin Y105. Analysis of mesentericin non-producing mutants and complementation experiments demonstrated that the major role of the membrane fusion protein, MesE, was in bacteriocin secretion for both strains. Moreover, the secretion machinery MesDE was demonstrated to be capable of transportation and maturation of the two pre-bacteriocins, mesentericin Y105 and B105. We also demonstrate that although MesDEs from strains Y105 and FR52 have significant sequence differences, both transporters were capable of assuring secretion of either bacteriocin.  相似文献   

17.
The extracellular glucosyltransferases (GTFs) of Streptococcus mutans are not secreted into the periplasmic space of Escherichia coli when the corresponding gtf genes are isolated in the latter organism. The utilization of both deletion analysis and gtfB: phoA fusions indicate that the signal sequences of the GTFs are functional in E. coli. However, these results further suggest that amino acid sequences present in the carboxyl terminus of the GTFs inhibit secretion through the cytoplasmic membrane in E. coli.  相似文献   

18.
The year 2010 is the centennial of the publication of the "Seven Little Devils" in the predecessor of Acta Physiologica. In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rather facilitated by a specific cellular activity substitute to secretion. The subjects of the present reevaluation of this controversy are Christian Bohr, Professor and Doctor of Medicine (1855-1911), nominated three times for the Nobel Prize; August Krogh, Doctor of Philosophy (1874-1949), Christian Bohr's assistant and later Nobel Prize laureate (1920); and Marie Krogh, née J?rgensen, Doctor of Medicine and wife of August Krogh (1874-1943). The controversy concerned is the transport of oxygen from the lungs into the bloodstream: are passive transport and diffusion capacity together sufficient to secure the oxygen supply in all circumstances or is there an additional specific ("energy consuming" or "active") mechanism responsible for the transport of oxygen from the alveoli into the bloodstream? The present discussion purports to show that the contestants' views were closer than the parties themselves and posterity recognized. Posterity has judged the dispute unilaterally from the Nobel laureate's point of view, but it is evident that August Krogh's Nobel Prize was awarded for the discovery of a cellular activity (Christian Bohr's expression), represented by Krogh's discovery of capillary recruitment. Christian Bohr appears to have been correct in the narrower sense that the diffusion capacity at rest is not great enough to explain the transport during work; a special mechanism intervenes and optimizes the conditions under which diffusion acts. August Krogh, of course, was right in the wider sense that the transport mechanism itself is always entirely passive.  相似文献   

19.
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.  相似文献   

20.
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号