首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Urea, with NaCl, constitutes the osmotic gradient that allows water reabsorption in mammalian kidneys. Because NaCl induces heat shock proteins, we tested the responses to heat shock of mIMCD3 cells adapted to permissive urea and/or NaCl concentrations. We found that heat-induced cell death was stronger after adaptation to 250 mM urea. This effect was reversible, dose dependent, and, interestingly, blunted by 125 mM NaCl. Moreover, we have shown that urea-adapted cells engaged in an apoptotic pathway upon heat shock, as shown by DNA laddering. This sensitization is not linked to a defect in the heat shock response, because the induction of HSP70 was similar in isotonic and urea-adapted cells. Moreover, it is not linked to the presence of urea inside cells, because washing urea away did not restore heat resistance and because applying urea and heat shock at the same time did not lead to heat sensitivity. Together, these results suggest that urea modifies the heat shock response, leading to facilitated apoptosis.  相似文献   

4.
In an attempt to question the toxic effect of heat shock and related stress, we have studied the activity of reporter enzymes during stress. Escherichia coli beta-galactosidase and Photinus pyralis luciferase were synthesized in mouse and Drosophila cells after transfection of the corresponding genes. Both enzymes are rapidly inactivated during hyperthermia. The corresponding polypeptides are not degraded but become insoluble even in the presence of non-ionic detergents. The heat inactivation is more dramatic in vivo within the living cell than in vitro, in a detergent-free crude cell lysate. The extent of enzyme inactivation at a given temperature depends on the cell type in which the enzyme is expressed. Luciferase is inactivated at lower temperatures within Drosophila cells than within mouse cells, whereas beta-galactosidase is inactivated at higher temperatures in E. coli than in mouse cells. A "priming" heat shock confers a transient increased resistance (thermotolerance) of cells against a second "challenging" heat shock. Enzyme inactivation during heat shock or exposure of the cells to ethanol is attenuated in heat shock-primed cells. A comparable thermoprotection is raised by a priming heat shock for both luciferase activity and protein synthesis. Thus, the study of reporter enzyme inactivation is a promising tool for understanding the molecular basis of the toxicity of heat shock and related stress as well as the mechanisms leading to thermotolerance.  相似文献   

5.
Heat shock results in inhibition of general protein synthesis. In thermotolerant cells, protein synthesis is still rapidly inhibited by heat stress, but protein synthesis recovers faster than in naive heat-shocked cells, a phenomenon known as translational thermotolerance. Here we investigate the effect of overexpressing a single heat shock protein on cap-dependent and cap-independent initiation of translation during recovery from a heat shock. When overexpressing alphaB-crystallin or Hsp27, cap-dependent initiation of translation was protected but no effect was seen on cap-independent initiation of translation. When Hsp70 was overexpressed however, both cap-dependent and -independent translation were protected. This finding indicates a difference in the mechanism of protection mediated by small or large heat shock proteins. Phosphorylation of alphaB-crystallin and Hsp27 is known to significantly decrease their chaperone activity; therefore, we tested phosphorylation mutants of these proteins in this system. AlphaB-crystallin needs to be in its non-phosphorylated state to give protection, whereas phosphorylated Hsp27 is more potent in protection than the unphosphorylatable form. This indicates that chaperone activity is not a prerequisite for protection of translation by small heat shock proteins after heat shock. Furthermore, we show that in the presence of 2-aminopurine, an inhibitor of kinases, among which is double-stranded RNA-activated kinase, the protective effect of overexpressing alphaB-crystallin is abolished. The synthesis of the endogenous Hsps induced by the heat shock to test for thermotolerance is also blocked by 2-aminopurine. Most likely the protective effect of alphaB-crystallin requires synthesis of the endogenous heat shock proteins. Translational thermotolerance would then be a co-operative effect of different heat shock proteins.  相似文献   

6.
7.
8.
Abstract: The effect of heat shock on agonist-stimulated intracellular Ca2+ mobilization and the expression of heat shock protein 72 (hsp72) in neuroblastoma × glioma hybrid cells (NG 108–15 cells) were examined. Hsp72 was expressed at 6 h after heat shock (42.5°C, 2 h), reached a maximum at 12 h, and decreased thereafter. Bradykinin-induced [Ca2+], rise was attenuated to 28% of control by heat shock at 2 h after heat shock, and reversion to the control level was seen 12 h later. When the cells were treated with quercetin or antisense oligodeoxyribonucleotide against hsp72 cDNA, the synthesis of hsp72 was not induced by heat shock, whereas bradykinin-induced [Ca2+]i rise was abolished and the [Ca2+]i rise was not restored. Recovery from this stressed condition was evident when cells were stimulated by the Ca2+-ATPase inhibitor thapsigargin, even in the presence of either quercetin or antisense oligodeoxyribonucleotide. Inositol 1,4,5-trisphosphate (IP3) production was not altered by heat shock at 12 h after heat shock, whereas IP3 receptor binding activity was reduced to 45.3%. In the presence of quercetin or antisense oligodeoxyribonucleotide, IP3 receptor binding activity decreased and reached 27.2% of the control 12 h after heat shock. Our working thesis is that heat shock transiently suppresses the IPs-mediated intracellular Ca2+ signal transduction system and that hsp72 is involved in the recovery of bradykinin-induced [Ca2+]i rise.  相似文献   

9.
In chondrocytes, a low-amplitude intermittent hydrostatic pressure induces production of extracellular matrix molecules, while high hydrostatic pressure inhibits it. High pressure increases cellular heat shock protein 70 level in a number of cell types on account of increased stabilisation of the heat shock protein 70 mRNA. In our experiments, only bovine primary chondrocytes, but not an immortalized chondrocytic cell line, could resist the induction of the stress response in the presence of continuous 30 MPa hydrostatic pressure. We have recently shown that protein synthesis is required for the stabilization. According to two-dimensional gel electrophoresis the synthesis of heat shock protein 90 was also increased in a chondrocytic cell line and in HeLa cells, and mass spectrometric analysis suggested that the induction was rather due to increase in heat shock protein 90beta than in heat shock protein 90alpha. The stress response was rather intense in HeLa cells, therefore, we investigated the effect of continuous 30 MPa hydrostatic pressure on the expression of the two heat shock protein 90 genes in HeLa cells using Northern and Western blot analyses. Heat shock protein 90beta mRNA level increased within 6 hours of exposure to 30 MPa hydrostatic pressure, while hsp90alpha level remained stable. At protein level there was a clear increase in the heat shock protein 90beta/heat shock protein 90alpha ratio, too. These results show a specific regulation of stress proteins in cells exposed to high hydrostatic pressure.  相似文献   

10.
11.
A heat stress causes a rapid inhibition of splicing. Exogenous expression of Hsp27 did not prevent that inhibition but enhanced the recovery of splicing afterward. Another small heat shock protein, alphaB-crystallin, had no effect. Hsp27, but not alphaB-crystallin, also hastened rephosphorylation of SRp38-dephosphorylated a potent inhibitor of splicing-after a heat shock, although it did not prevent dephosphorylation by a heat shock. The effect of Hsp27 on rephosphorylation of SRp38 required phosphorylatable Hsp27. A Hsp90 client protein was required for the effect of Hsp27 on recovery of spicing and on rephosphorylation of SRp38. Raising the Hsp70 level by either a pre-heat shock or by exogenous expression had no effect on either dephosphorylation of SRp38 during heat shock or rephosphorylation after heat shock. The phosphatase inhibitor calyculin A prevented dephosphorylation of SRp38 during a heat shock and caused complete rephosphorylation of SRp38 after a heat shock, indicating that cells recovering from a heat shock are not deficient in kinase activity. Together our data show that the activity of Hsp27 in restoring splicing is not due to a general thermoprotective effect of Hsp27, but that Hsp27 is an active participant in the (de)phosphorylation cascade controlling the activity of the splicing regulator SRp38.  相似文献   

12.
We have recently demonstrated that HeLa cells that had been depleted of polyamines by treatment with inhibitors of polyamine biosynthesis were deficient in their ability to repair X-ray-induced DNA strand breaks. Since it had previously been demonstrated that hyperthermic shock also inhibited strand break repair following X irradiation and that hyperthermia resulted in a leakage of polyamines from cells, it seemed of interest to examine whether the inhibition of repair by hyperthermia was related to this loss of cellular polyamines. In the present paper it is demonstrated that both polyamine depletion and hyperthermia inhibit strand closure, and that a combined treatment further reduces the rate of repair. In cells not depleted of polyamines, repair is restored to normal levels if hyperthermia treatment is followed by a 4-h incubation at 37 degrees C before X irradiation. In polyamine-depleted cells, this 37 degrees C incubation does not result in a return of repair ability. Polyamine supplementation was not effective in reversing hyperthermia-dependent repair inhibition, and, in fact, restoration of repair in control cells following hyperthermic shock corresponded to a time at which polyamines show a maximum decrease in those cells. These results suggest that the inhibition of repair and the increased radiosensitivity observed in hyperthermically treated cells is not related to polyamine depletion. However, data further suggest that polyamine-depleted cells may have other alterations, perhaps in chromatin, which render them more sensitive to thermal inhibition of repair.  相似文献   

13.
The combined effect of heat shock and glucocorticoid hormone (dexamethasone--DM) on plasmacytoma culture cells has been investigated. Fibroblasts and splenocytes were used as control cell types. Heat shock failed to induce the main hsp68 in plasmacytoma cells, however, the rate of synthesis of a constitutive protein (c-hsp70) increased significantly. In general, plasmacytoma cells exhibit hyperthermosensitivity as compared to control. DM treatment before heat shock did not protect plasmacytoma cells against heat damage. Moreover, if DM was present in culture medium for 3 days before heat shock, the synthesis of c-hsp70 was not increased. Heat-shock treatment leads to some decrease in the number of intact glucocorticoid hormone gc-receptors and binding sites in the nucleus. However, the preserved number of intact receptors after heat shock is quite enough for the realization of all glucocorticoid hormone effects. Interestingly, DM itself inhibits the proliferation of plasmacytoma cells. Furthermore, the combined action of heat shock and DM leads to more pronounced inhibition of plasmacytoma cells, depending on the DM doze and the time of heat shock treatment. The role of increased expression of c-myc gene, characteristic for plasmacytoma cells, in all the phenomena observed is discussed.  相似文献   

14.
15.
16.
17.
We have investigated the effects of extracellular anions on the regulation of expression of the heat shock response in Drosophila Kc cells incubated in defined balanced salt solutions. Widely varying chloride concentrations had no effect on normal or heat shock protein (hsp) expression. Increasing glutamate concentrations from zero to 15 mM increased hsp expression more than 100-fold while affecting expression of non-heat-shock proteins minimally. Glutamine was 20-100-fold more potent than glutamate in supporting hsp expression, while other amino acids were less effective or supported no detectable hsp synthesis in heat shock. Inhibition of glutamine synthetase with methionine-sulfoximine resulted in very low hsp expression with glutamate and normal high level expression with glutamine, confirming the importance of glutamine. The absence of glucose and treatment with 2-deoxyglucose did not change the requirement for adequate glutamine for hsp expression. Cells heat shocked under conditions which gave very low hsp expression resumed growth when returned to normal medium as well as cells which expressed normal levels of hsps. Measurements of free amino acid levels in cells heat shocked in the presence and absence of glutamine showed a correlation between glutamine levels and amount of hsp expression. We conclude that a physiological process regulated by glutamine or a glutamine metabolite is important for normal hsp expression in heat shock conditions in Drosophila.  相似文献   

18.
19.
Negative supercoiling of plasmid DNA in Escherichia coli cells can decrease transiently when exposed to heat shock. The effect of cold shock on DNA supercoiling was examined, and analysis by agarose gel electrophoresis in the presence of chloroquine revealed that negative supercoiling of plasmid DNA in cells increased when cells were exposed to cold shock. This increase was transient and was nil when the cells were pretreated with nalidixic acid, an inhibitor of DNA gyrase. In a mutant deficient in expression of HU protein, the increase in negative supercoiling of DNA by cold shock is less apparent than in wild-type cells. It is proposed that DNA gyrase and HU protein have a role in the DNA supercoiling reaction seen with cold shock.  相似文献   

20.
AIMS: To investigate whether non-preconditioned yeast cells survive under heat shock, when placed in growth medium originated from protected cells and to provide insights into the ionic contribution in the response. METHODS AND RESULTS: The heat shock response was investigated by determining cell viability following exposure of yeast cells to 53 degrees C for 30 min, either in the absence or presence of drugs. Preconditioning was performed by incubating the cultures at 37 degrees C for 2 h. Under heat shock, non-preconditioned cell survival was significantly enhanced by the presence of the cell-free supernatant of resistant cultures. Addition of omeprazole or tetraethylammonium ions during the heat shock resulted in similar increases. Neither amiodarone nor mepivacaine showed any analogous effect. Omeprazole enhanced survival when added before the heat shock, while amiodarone exhibited a cytocidic action. CONCLUSIONS: Rapid balancing of ions may contribute to cell survival during heat shock, while survival under mild stress could probably be co-ordinated by additional events. SIGNIFICANCE AND IMPACT OF THE STUDY: Evidence is provided for the implication of the external environment and ionic homeostasis in the survival of yeast cells under unfavourable environmental conditions. This knowledge may be of importance in controlling both fermentation and therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号