首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
The present experiments show that the single gene for the lens-specific protein alpha A-crystallin of chickens and mice uses a different subset of cis- and trans-acting regulatory elements for expression in transfected embryonic chicken lens epithelial cells. A chicken alpha A-crystallin-chloramphenicol acetyltransferase (CAT) fusion gene required 162 base pairs whereas the murine alpha A-crystallin-CAT fusion gene required only 111 base pairs of 5'-flanking sequences for efficient tissue-specific expression in the transfected chicken lens cells. Gel retardation and competition experiments were performed using embryonic chicken lens nuclear extract and oligodeoxynucleotides identical to the 5'-flanking region of the chicken (-170/-111) and murine (-111/-88 and -88/-55) alpha A-crystallin gene. The results indicated that these homologous promoters use different nuclear factors for function. Methylation interference analysis identified a dyad of symmetry (CTGGTTCCCACCAG) at position -153 to -140 in the chicken alpha A-crystallin promoter which binds one or more lens nuclear factors. Gel mobility shift experiments using nuclear extracts of brain, reticulocytes, and muscle of embryonic chickens or HeLa cells suggested that the factor(s) binding to the chicken alpha A-crystallin gene promoter sequences are not lens specific. Despite differences in the functional and protein-binding properties of the alpha A-crystallin gene promoter of chickens and mice, expression of the chicken alpha A-crystallin-CAT fusion gene in transgenic mice was lens specific, consistent with a common underlying mechanism for expression of the alpha A-crystallin gene in chickens and mice.  相似文献   

3.
A lens-specific enhancer, an 84bp element between base pairs -162 and -79, of the chicken alpha A-crystallin gene is composed of two motifs, alpha CE1 (-162 and -134) and alpha CE2 (-119 and -99). Previous studies showed that a nuclear factor which binds to alpha CE1, termed alpha CEF1, is present at high levels in lens cells. Methylation interference analysis identified an inverted repeat of 5bp separated by 4bp, 5'-CTGGTTCCCACCAG-3', between positions -153 and -140 as an alpha CEF1-binding site. Gel mobility shift assays using synthetic oligonucleotides with site-directed mutations revealed that the alpha CEF1-binding consensus sequence is 5'-C(T/A)GGN6CC(A/T)G-3'. Comparison of this binding motif with regulatory sequences of diverse crystallin genes from diverse species suggests that alpha CE1 may be a ubiquitous crystallin gene enhancer.  相似文献   

4.
The abundance of crystallins (> 80% of the soluble protein) in the ocular lens provides advantageous markers for selective gene expression during cellular differentiation. Here we show by functional and protein-DNA binding experiments that the chicken alpha A-crystallin gene is regulated by at least five control elements located at sites A (-148 to -139), B (-138 to -132), C (-128 to -101), D (-102 to -93), and E (-56 to -41). Factors interacting with these sites were characterized immunologically and by gel mobility shift experiments. The results are interpreted with the following model. Site A binds USF and is part of a composite element with site B. Site B binds CREB and/or CREM to enhance expression in the lens and binds an AP-1 complex including CREB, Fra2 and/or JunD which interacts with USF on site A to repress expression in fibroblasts. Sites C and E (which is conserved across species) bind Pax-6 in the lens to stimulate alpha A-crystallin promoter activity. These experiments provide the first direct data that Pax-6 contributes to the lens-specific expression of a crystallin gene. Site D (-104 to -93) binds USF and is a negative element. Thus, the data indicate that USF, CREB and/or CREM (or AP-1 factors), and Pax-6 bind a complex array of positive and negative cis-acting elements of the chicken alpha A-crystallin gene to control high expression in the lens and repression in fibroblasts.  相似文献   

5.
We have shown by site-directed mutagenesis that the sequence between positions -69 and -40 of the mouse alpha A-crystallin gene is crucial for tissue-specific gene expression in a transfected mouse lens epithelial cell line transformed with the early region of simian virus 40. Gel retardation experiments with synthetic oligodeoxynucleotides revealed a mouse lens nuclear protein which bound specifically to the palindromic sequence 5'-GGGAAATCCC-3' at positions -66 to -57 in the alpha A-crystallin promoter. By screening a bacteriophage lambda gt11 expression library of the transformed lens cells, we isolated a 2.5-kilobase-pair cDNA encoding a fusion protein which bound to this sequence and to the regulatory element of the major histocompatibility complex (MHC) class I gene. This cDNA hybridized to a 10-kilobase-pair polyadenylated RNA present in many different tissues, including lens. It encoded a protein, tentatively called alpha A-CRYBP1, containing at least two zinc fingers. alpha A-CRYBP1 is either homologous or very similar to the human nuclear proteins MBP-1 (Baldwin et al., Mol. Cell. Biol. 10:1406-1414, 1990), PRDII-BFI (Fan and Maniatis, Genes Dev. 4:29-42, 1990), and HIV-EP1 (Maekawa et al., J. Biol. Chem. 264:14591-14593, 1989), which bind to regulatory elements of the MHC class I, beta interferon, and human immunodeficiency virus genes, respectively. Our results suggest that the lens-specific alpha A-crystallin, MHC class I, beta interferon and other genes have a similar cis-acting DNA regulatory motif that shares alpha A-CRYBPI, MBP-1, PRDII-BF1, HIV-EP1, or other closely related proteins as trans-acting factors.  相似文献   

6.
7.
8.
9.
10.
11.
One copy of the mouse alpha A-crystallin gene alpha A-CRYBP1 site activated the thymidine kinase (tk) promoter in a mouse lens epithelial cell line but not in primary chicken lens cells; multiple copies further activated the tk promoter and extended expression to fibroblasts, B cells, and chicken lens cultures. The loss of lens specificity by multimerization may place selective constraints on the number of alpha A-CRYBP1 sites in the alpha A-crystallin promoter.  相似文献   

12.
The 5' flanking regions of the six rat gamma-crystallin genes (gamma A-gamma F) are all capable of conferring lens-specific expression to the bacterial chloramphenicol acetyl transferase (CAT) reporter gene in either transdifferentiating chicken neural retina cells or mouse lens epithelial cells. Deletion mapping of the most active gamma-crystallin promoter region, the gamma D region, showed that at least three elements are required for maximal expression in mouse lens epithelial cells: element(s) located between -200 and -106, a conserved CG rich region around position -75, and a CG stretch around -15. The region between -200 and -106 was dispensable in transdifferentiating chicken neural retina cells, which instead required the region between -106 and -78. The maximal activity of the gamma E and gamma F promoters was also dependent upon the integrity of the conserved CG region located around -75. A synthetic oligonucleotide containing this sequence was capable of lens-specific enhancement of the activity of the tk promoter in transdifferentiating chicken neural retina cells but not in mouse lens epithelial cells. Our results further show that this region may contain a silencer element, active in non-lens tissues, as well.  相似文献   

13.
alpha A-crystallin is expressed in non-ocular tissues.   总被引:6,自引:0,他引:6  
alpha-Crystallin, the predominant structural protein of the ocular lens, has been considered to be composed of two subunits, alpha A-crystallin and alpha B-crystallin. Of these two, alpha B-crystallin has been previously shown to be an extralenticular protein while alpha A-crystallin has been considered to be a lens-specific polypeptide. Using an antiserum directed against an N-terminal peptide of alpha-crystallin, we have detected a 20-kDa protein in various rat tissues including the brain, liver, lung, spleen, skin, and small intestine and in a number of established epithelial and fibroblast cell lines. PCR analysis of poly(A)-enriched RNA and Southern blot analysis indicated the presence of alpha A-crystallin mRNA sequences in different non-lenticular tissues. Among the non-ocular tissues examined, spleen showed the highest levels of alpha A-crystallin protein and mRNA. The identity of alpha A-crystallin sequences in the spleen was established by cloning and sequencing a polymerase chain reaction-amplified region of alpha A-crystallin mRNA. Sequences derived from spleen and eye revealed almost 100% identity at the nucleotide level. Interestingly, alpha A-crystallin and alpha B-crystallin seem to exist in an inverse quantitative relationship in the spleen and the heart, the two non-ocular tissues where they show highest concentrations, respectively. The known conserved evolution of alpha A-crystallin and the definitive demonstration of the non-ocular expression of this polypeptide suggest important non-crystallin functions for this protein.  相似文献   

14.
Previous studies have shown that the -661/+44 sequence of the murine alpha B-crystallin gene contains a muscle-preferred enhancer (-426/-257) and can drive the bacterial chloramphenicol acetyltransferase (CAT) gene in the lens, skeletal muscle and heart of transgenic mice. Here we show that transgenic mice carrying a truncated -164/+44 fragment of the alpha B-crystallin gene fused to the CAT gene expressed exclusively in the lens; by contrast mice carrying a -426/+44 fragment of the alpha B gene fused to CAT expressed highly in the lens, skeletal muscle and heart, and slightly in the lung, brain, kidney, spleen and liver. DNase I protection experiments indicated that the -147/-118 sequence is protected by nuclear proteins from alpha TN4-1 lens cell line, but not by nuclear proteins from myotubes of the C2C12 cell line. Site directed mutagenesis of this sequence decreased promoter activity in transiently-transfected lens cells, consistent with this sequence being a lens-specific regulatory region (LSR). We conclude that the -426/-257 enhancer is required for expression in skeletal muscle, heart and possibly other tissues, and that the -164/+44 sequence of the alpha B-crystallin gene is sufficient for expression in the lens of transgenic mice.  相似文献   

15.
M A Thompson  J W Hawkins  J Piatigorsky 《Gene》1987,56(2-3):173-184
The chicken alpha A-crystallin gene and 2.6 kb of its 5' flanking sequence have been isolated and characterized by electron microscopy and sequencing. The structural gene is 4.5 kb long and contains two introns, each approx. 1 kb in length. The first intron divides codons 63 and 64, and the second intron divides codons 104 and 105, as in rodents. There is little indication that the insert exon of rodents (an alternatively spliced sequence) is present in complete form in the chicken alpha A-crystallin gene; small stretches of similarity to this sequence were found throughout the gene. The 5' flanking sequence of the chicken alpha A-crystallin gene shows considerable sequence similarity with other mammalian alpha B-crystallin genes. In addition, one consensus sequence (GCAGCATGCCCTCCTAG) present in the 5' flanking region of the chicken alpha A-crystallin gene was found in the 5' flanking region of most reported crystallin genes.  相似文献   

16.
17.
18.
The lens-specific reglatory element of the delta 1-crystallin enhancer lies within the core segment (Goto et al., (1990) Mol. Cell. Biol. 10, 935-964). The element was allocated within the 55 bp long HN fragment of the core. Block-wise base substitutions were introduced to the 55 bp and their effect on the enhancer activity of the multimers in lens cells was examined. By base sequence alteration of either of the contiguous blocks 5 and 6, with their original sequence of TTGCT and CACCT, respectively, enhancer activity was totally lost. A lens nuclear factor delta EF1 was found which bound specifically to the base sequences defined by the blocks. DNA binding activity very similar to delta EF1 was also found in extracts of tissues other than lens, suggesting that delta EF1 participates in lens-specific regulation through tissue-dependent modification or interaction with other factors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号