首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitosis-specific phosphorylation by cdc2 kinase causes nonmuscle caldesmon to dissociate from microfilaments (Yamashiro, S., Yamakita, Y., Ishikawa, R., and Matsumura, F. (1990) Nature 344, 675-678; Yamashiro, S., Yamakita, Y., Hosoya, H., and Matsumura, F. (1991) Nature 349, 169-172). To explore the function of mitosis-specific phosphorylation of caldesmon, in vivo- and in vitro-phosphorylated caldesmons have been characterized. We have found that both in vivo and in vitro phosphorylation of caldesmon causes similar changes in the properties, including reduction in actin, calmodulin, and myosin binding of caldesmon, and a decrease in the inhibition of actomyosin ATPase by caldesmon. Rat non-muscle caldesmon is phosphorylated in vitro up to a ratio of 7 mol/mol of protein. Actin-binding constants of both a high affinity (K a = 1.2 x 10(7) M-1) and a low affinity (K a = 1 x 10(6) M-1) site of unphosphorylated caldesmon are reduced to less than 10(5) M-1 with 5 mol of phosphate incorporation per mol of protein. Actin-bound caldesmon can be phosphorylated by cdc2 kinase, which results in the dissociation of caldesmon from F-actin. Caldesmon has a second myosin-binding site in the C terminus, in addition to the N terminus myosin-binding domain previously reported, because the bacterially expressed C terminus of caldesmon shows binding to myosin. Phosphorylation of the C-terminal fragments decreases their myosin-binding affinity as observed with intact caldesmon. These results suggest that caldesmon loses most of its in vitro functions during mitosis as a result of phosphorylation, which may be required for the reorganization of microfilaments during mitosis.  相似文献   

2.
Phosphorylation of caldesmon by cdc2 kinase   总被引:6,自引:0,他引:6  
A recent report that mitosis-specific phosphorylation causes the nonmuscle caldesmon to dissociate from microfilaments (Yamashiro, S., Yamakita, Y., Ishikawa, R., and Matsumura, F. (1990) Nature 344, 675-678) suggests that this process may contribute to the major structural reorganization of the eukaryotic cell at mitosis. In this study we have demonstrated that smooth muscle caldesmon is phosphorylated in vitro by cdc2 kinase from mitotic phase HeLa cells to 1.2 mol of phosphate/mol of caldesmon. Tryptic maps showed three major phosphorylated spots and approximately equal amounts of phosphorylated Ser and Thr were identified. F-actin or calmodulin in the presence of Ca2+ blocks the phosphorylation of caldesmon. Phosphorylation of caldesmon greatly reduced its binding to F-actin. The phosphorylation sites were located in a 10,000-Da CnBr fragment at the COOH-terminal end of the caldesmon molecule known to house the binding sites for actin and calmodulin (Bartegi A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238). Our finding supports the model that phosphorylation of caldesmon by cdc2 kinase at mitosis may contribute to the disassembly of the microfilament bundles during prophase.  相似文献   

3.
Phosphorylation of the regulatory light chain of myosin II (RMLC) at Serine 19 by a specific enzyme, MLC kinase, is believed to control the contractility of actomyosin in smooth muscle and vertebrate nonmuscle cells. To examine how such phosphorylation is regulated in space and time within cells during coordinated cell movements, including cell locomotion and cell division, we generated a phosphorylation-specific antibody.

Motile fibroblasts with a polarized cell shape exhibit a bimodal distribution of phosphorylated myosin along the direction of cell movement. The level of myosin phosphorylation is high in an anterior region near membrane ruffles, as well as in a posterior region containing the nucleus, suggesting that the contractility of both ends is involved in cell locomotion. Phosphorylated myosin is also concentrated in cortical microfilament bundles, indicating that cortical filaments are under tension. The enrichment of phosphorylated myosin in the moving edge is shared with an epithelial cell sheet; peripheral microfilament bundles at the leading edge contain a higher level of phosphorylated myosin. On the other hand, the phosphorylation level of circumferential microfilament bundles in cell–cell contacts is low. These observations suggest that peripheral microfilaments at the edge are involved in force production to drive the cell margin forward while microfilaments in cell–cell contacts play a structural role. During cell division, both fibroblastic and epithelial cells exhibit an increased level of myosin phosphorylation upon cytokinesis, which is consistent with our previous biochemical study (Yamakita, Y., S. Yamashiro, and F. Matsumura. 1994. J. Cell Biol. 124:129–137). In the case of the NRK epithelial cells, phosphorylated myosin first appears in the midzones of the separating chromosomes during late anaphase, but apparently before the formation of cleavage furrows, suggesting that phosphorylation of RMLC is an initial signal for cytokinesis.

  相似文献   

4.
It has recently been shown that caldesmon from non-muscle (Yamashiro, S., Yamakita, Y., Hosoya, H., and Matsumura, F. (1991) Nature 349, 169-172) and smooth muscle cells (Mak, A. S., Watson, M. H., Litwin, C. M. E., and Wang, J. H. (1991) J. Biol. Chem. 266, 6678-6681) can be phosphorylated in vitro by p34cdc2 kinase resulting in the inhibition of caldesmon binding to F-actin and Ca(2+)-calmodulin. In this study, we have identified five phosphorylation sites in smooth muscle caldesmon at Ser582, Ser667, Thr673, Thr696, and Ser702. All the sites bear some resemblance to the S(T)-P-X-X motif recognized by p34cdc2. The preferred site of phosphorylation at Thr673 accounts for about 40% of the total phosphorylation. Four of the sites occur in two pairs of closely spaced sites, Ser667/Thr673 and Thr696/Ser702; phosphorylation of one site in each pair inhibits strongly the phosphorylation of the second site in the same pair, presumably due to the close proximity of the two sites. Similar negative cooperativity in phosphorylation of Ser667 and Thr673 was observed using a 22-residue synthetic peptide containing the two sites. Phosphorylation of Ser667/Thr673 and Thr696/Ser702 account for about 90% of the total level of phosphorylation and these sites are located within the 10-kDa CNBr fragment at the COOH-terminal end of caldesmon known to bind actin and Ca(2+)-calmodulin.  相似文献   

5.
It has been demonstrated previously that during mitosis the sites of myosin phosphorylation are switched between the inhibitory sites, Ser 1/2, and the activation sites, Ser 19/Thr 18 (Yamakita, Y., S. Yamashiro, and F. Matsumura. 1994. J. Cell Biol. 124:129- 137; Satterwhite, L.L., M.J. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), suggesting a regulatory role of myosin phosphorylation in cell division. To explore the function of myosin phosphatase in cell division, the possibility that myosin phosphatase activity may be altered during cell division was examined. We have found that the myosin phosphatase targeting subunit (MYPT) undergoes mitosis-specific phosphorylation and that the phosphorylation is reversed during cytokinesis. MYPT phosphorylated either in vivo or in vitro in the mitosis-specific way showed higher binding to myosin II (two- to threefold) compared to MYPT from cells in interphase. Furthermore, the activity of myosin phosphatase was increased more than twice and it is suggested this reflected the increased affinity of myosin binding. These results indicate the presence of a unique positive regulatory mechanism for myosin phosphatase in cell division. The activation of myosin phosphatase during mitosis would enhance dephosphorylation of the myosin regulatory light chain, thereby leading to the disassembly of stress fibers during prophase. The mitosis-specific effect of phosphorylation is lost on exit from mitosis, and the resultant increase in myosin phosphorylation may act as a signal to activate cytokinesis.  相似文献   

6.
《The Journal of cell biology》1990,111(6):2487-2498
Caldesmon is present in a high molecular mass form in smooth muscle and predominantly in a low molecular mass form in nonmuscle cells. Their biochemical properties are very similar. To examine whether these two forms of caldesmon behave differently in cultured cells, we microinjected fluorescently labeled smooth muscle and nonmuscle caldesmons into fibroblasts. Simultaneous injection of both caldesmons into the same cells has revealed that both high and low relative molecular mass caldesmons are quickly (within 10 min) and stably (over 3 d) incorporated into the same structures of microfilaments including stress fibers and membrane ruffles, suggesting that nonmuscle cells do not distinguish nonmuscle caldesmon from smooth muscle caldesmon. The effect of calmodulin on the incorporation of caldesmon has been examined by coinjection of caldesmon with calmodulin. We have found that calmodulin retards the incorporation of caldesmon into stress fibers for a short period (10 min) but not for a longer incubation (30 min). The behavior of caldesmon in developing muscle cells was also examined because we previously observed that caldesmon disappears during myogenesis (Yamashiro, S., R. Ishikawa, and F. Matsumura. 1988. Protoplasma Suppl. 2: 9-21). We have found that, in contrast to its stable incorporation into stress fibers of fibroblasts, caldesmon is unable to be incorporated into thin filament structure (I-band) of differentiated muscle.  相似文献   

7.
《The Journal of cell biology》1995,131(5):1223-1230
Glucocorticoids induce the remodeling of the actin cytoskeleton and the formation of numerous stress fibers in a protein synthesis-dependent fashion in a variety of cell types (Castellino, F., J. Heuser, S. Marchetti, B. Bruno, and A. Luini. 1992. Proc. Natl. Acad. Sci. USA. 89:3775-3779). These cells can thus be used as models to investigate the mechanisms controlling the organization of actin filaments. Caldesmon is an almost ubiquitous actin- and calmodulin-binding protein that synergizes with tropomyosin to stabilize microfilaments in vitro (Matsumura, F., and Yamashiro, S. 1993. Current Opin. Cell Biol. 5:70- 76). We now report that glucocorticoids (but not other steroids) enhanced the levels of caldesmon (both protein and mRNA) and induced the reorganization of microfilaments with similar time courses and potencies in A549 cells. A caldesmon antisense oligodeoxynucleotide targeted to the most abundant caldesmon isoform in A549 cells dramatically inhibited glucocorticoid-induced caldesmon synthesis and actin reorganization with similar potencies. Several control oligonucleotides were inactive. These results demonstrate that caldesmon has a crucial role in vivo in the organization of the actin cytoskeleton and suggest that hormone-induced changes in caldesmon levels mediate microfilament remodeling.  相似文献   

8.
One of the profound changes in cellular morphology during mitosis is a massive alteration in the organization of microfilament cytoskeleton. It has been recently discovered that nonmuscle caldesmon, an actin and calmodulin binding microfilament-associated protein of relative molecular mass Mr = 83,000, is dissociated from microfilaments during mitosis, apparently as a consequence of mitosis-specific phosphorylation. cdc2 kinase, which is a catalytic subunit of MPF (maturation or mitosis promoting factor), is found to be responsible for the mitosis-specific phosphorylation of caldesmon. Because caldesmon is implicated in the regulation of actin myosin interactions and/or microfilament organization, these results suggest that cdc2 kinase directly affects microfilament re-organization during mitosis.  相似文献   

9.
Caldesmon is phosphorylated by cdc2 kinase during mitosis, resulting in the dissociation of caldesmon from microfilaments. To understand the physiological significance of phosphorylation, we generated a caldesmon mutant replacing all seven cdc2 phosphorylation sites with Ala, and examined effects of expression of the caldesmon mutant on M-phase progression. We found that microinjection of mutant caldesmon effectively blocked early cell division of Xenopus embryos. Similar, though less effective, inhibition of cytokinesis was observed with Chinese hamster ovary (CHO) cells microinjected with 7th mutant. When mutant caldesmon was introduced into CHO cells either by protein microinjection or by inducible expression, delay of M-phase entry was observed. Finally, we found that 7th mutant inhibited the disassembly of microfilaments during mitosis. Wild-type caldesmon, on the other hand, was much less potent in producing these three effects. Because mutant caldesmon did not inhibit cyclin B/cdc2 kinase activity, our results suggest that alterations in microfilament assembly caused by caldesmon phosphorylation are important for M-phase progression.  相似文献   

10.
Formation of polar lobe constrictions and cleavage furrows in fertilized eggs of the marine mudsnail, Ilyanassa obsoleta, is associated with localized concentrations of microfilaments in the cortical cytoplasm. These microfilaments disappear after treatment with cytochalasin B, with concomitant regression of polar lobe constrictions and cleavage furrows. Microtubules are present in the noncortical cytoplasm of the polar lobe and disappear after treatment with colchicine. Colchicine application early in lobe development inhibits both polar lobe formation and cytokinesis; however, drug treatment later in lobe development, although still inhibiting cytokinesis, fails to inhibit the continued constriction of the polar lobe neck and subsequent lobe resorption. The data therefore suggest that separate colchicine-sensitive steps are required for the complete constriction of the polar lobe neck and for initiation of cytokinesis. Polar lobe necks constrict at two markedly different rates in contrast to the smooth, single-phase progression of cleavage furrows. As with cytokinesis, polar lobe formation may occur by the contraction of a microfilament ring whose polymerization or activity is regulated by microtubules.  相似文献   

11.
Phosphorylation on Ser 19 of the myosin II regulatory light chain by myosin light chain kinase (MLCK) regulates actomyosin contractility in smooth muscle and vertebrate nonmuscle cells. The smooth/nonmuscle MLCK gene locus produces two kinases, a high molecular weight isoform (long MLCK) and a low molecular weight isoform (short MLCK), that are differentially expressed in smooth and nonmuscle tissues. To study the relative localization of the MLCK isoforms in cultured nonmuscle cells and to determine the spatial and temporal dynamics of MLCK localization during mitosis, we constructed green fluorescent protein fusions of the long and short MLCKs. In interphase cells, localization of the long MLCK to stress fibers is mediated by five DXRXXL motifs, which span the junction of the NH(2)-terminal extension and the short MLCK. In contrast, localization of the long MLCK to the cleavage furrow in dividing cells requires the five DXRXXL motifs as well as additional amino acid sequences present in the NH(2)-terminal extension. Thus, it appears that nonmuscle cells utilize different mechanisms for targeting the long MLCK to actomyosin structures during interphase and mitosis. Further studies have shown that the long MLCK has twofold lower kinase activity in early mitosis than in interphase or in the early stages of postmitotic spreading. These findings suggest a model in which MLCK and the myosin II phosphatase (Totsukawa, G., Y. Yamakita, S. Yamashiro, H. Hosoya, D.J. Hartshorne, and F. Matsumura. 1999. J. Cell Biol. 144:735-744) act cooperatively to regulate the level of Ser 19-phosphorylated myosin II during mitosis and initiate cytokinesis through the activation of myosin II motor activity.  相似文献   

12.
Actin filament dynamics play a critical role in mitosis and cytokinesis. LIM motif-containing protein kinase 1 (LIMK1) regulates actin reorganization by phosphorylating and inactivating cofilin, an actin-depolymerizing and -severing protein. To examine the role of LIMK1 and cofilin during the cell cycle, we measured cell cycle-associated changes in the kinase activity of LIMK1 and in the level of cofilin phosphorylation. Using synchronized HeLa cells, we found that LIMK1 became hyperphosphorylated and activated in prometaphase and metaphase, then gradually returned to the basal level as cells entered into telophase and cytokinesis. Although Rho-associated kinase and p21-activated protein kinase phosphorylate and activate LIMK1, they are not likely to be involved in mitosis-specific activation and phosphorylation of LIMK1. Immunoblot and immunofluorescence analyses using an anti-phosphocofilin-specific antibody revealed that the level of cofilin phosphorylation, similar to levels of LIMK1 activity, increased during prometaphase and metaphase then gradually declined in telophase and cytokinesis. Ectopic expression of LIMK1 increased the level of cofilin phosphorylation throughout the cell cycle and induced the formation of multinucleate cells. These results suggest that LIMK1 is involved principally in control of mitosis-specific cofilin phosphorylation and that dephosphorylation and reactivation of cofilin at later stages of mitosis play a critical role in cytokinesis of mammalian cells.  相似文献   

13.
Myosin plays an important role in mitosis, especially during cytokinesis. Although it has been assumed that phosphorylation of regulatory light chain of myosin (RLC) controls motility of mammalian non-muscle cells, the functional significance of RLC phosphorylation remains uninvestigated. To address this problem, we have produced unphosphorylatable RLC (T18A/S19A RLC) and overexpressed it in COS-7 cells and normal rat kidney cells. Overexpression of T18A/S19A RLC but not wild type RLC almost completely abolished concanavalin A-induced receptor cap formation. The results indicate that myosin phosphorylation is critical for concanavalin A-induced gathering of surface receptors. T18A/S19A RLC overexpression resulted in the production of multinucleated cells, suggesting the failure of proper cell division in these cells. Video microscopic observation revealed that cells expressing T18A/S19A RLC showed abnormalities during mitosis in two respects. One is that the cells produced abnormal cleavage furrows, resulting in incomplete cytokinesis, which suggests that myosin phosphorylation is important for the normal recruitment of myosin molecules into the contractile ring structure. The other is that separation of chromosomes from the metaphase plate is disrupted in T18A/S19A RLC expressing cells, thus preventing proper transition from metaphase to anaphase. These results suggest that, in addition to cytokinesis, myosin and myosin phosphorylation play a role in the karyokinetic process.  相似文献   

14.
The preprophase band (PPB) of microtubules is thought to be involved in deciding the future division site. In this study, we investigated the effects of double PPBs on spindle formation and the directional decision of cytokinesis by using transgenic BY-2 cells expressing green fluorescent protein (GFP)-tubulin. At prophase, most of the cells with double PPBs formed multipolar spindles, whereas all cells with single PPBs formed normal bipolar spindles, clearly implicating the PPB in deciding the spindle poles. At metaphase, however, both cell types possessed the bipolar spindles, indicating the existence of correctional mechanism(s) at prometaphase. From prometaphase to metaphase, the spindles in double PPB cells altered their directions to become oblique to the cell-elongating axis, and these orientations were maintained in the phragmoplast and resulted in the oblique division planes. These oblique cell plates decreased when actin microfilaments were disrupted, and double actin-depleted zones (ADZs) appeared where the double PPBs had existed. These results suggest that the information necessary for proper cytokinesis may be transferred from the PPBs to the ADZs, even in the case of the double PPBs.  相似文献   

15.
Stamen hair cells of the spiderwort plant Tradescantia virginiana exhibit unusually predictable rates of progression through mitosis, particularly from the time of nuclear envelope breakdown (NEBD) through the initiation of cytokinesis. The predictable rate of progression through prometaphase and metaphase has made these cells a useful model system for the determination of the timing of regulatory events that trigger entry into anaphase. A number of studies suggest that the elevation of one or more protein kinase activities is a necessary prerequisite for entry into anaphase. The current experiments employ two strategies to test when these elevations in protein kinase activity actually occur during metaphase. In perfusions, we added the protein kinase inhibitors K-252a, staurosporine, or calphostin C to living stamen hair cells for 10-min intervals at known times during prometaphase or metaphase and monitored the subsequent rate of progression into anaphase. Metaphase transit times were altered as a function of the time of addition of K-252a or staurosporine to the cells; metaphase transit times were extended significantly by treatments initiated in prometaphase through early metaphase and again late in metaphase. Transit times were normal after treatments initiated in mid-metaphase, approximately 15 to 21 min after NEBD. Calphostin C had no significant effect on the metaphase transit times. In parallel, cells were microinjected with known quantities of a general-purpose protein kinase substrate peptide, VRKRTLRRL, at predefined time points during prometaphase and metaphase. At a cytosolic concentration of 100 nM to 1 microM, the peptide doubled or tripled the metaphase transit times when injected into the cytosol of mitotic cells within the first 4 min after NEBD, at any point from 7.5 to 9 min after NEBD, at any point from 14 to 16 min after NEBD, at 21 min after NEBD, or at 24 min after NEBD. At the concentration used and during these brief intervals, the peptide appeared to act as a competitive inhibitor to reveal inflection points when protein kinase activation was occurring or when endogenous substrate levels approached levels of the peptide. The timing of these inflection points coincides with the changes in protein kinase activities during prometaphase and metaphase, as indicated by our perfusions of cells with the broad spectrum kinase inhibitors. Collectively, our results suggest that the cascade that culminates in anaphase is complex and involves several successive protein kinase activation steps punctuated by the activation of one or more protein phosphatases in mid-metaphase.  相似文献   

16.
Anaphase, mitotic exit, and cytokinesis proceed in rapid succession, and while mitotic exit is a requirement for cytokinesis in yeast, it may not be a direct requirement for furrow initiation in animal cells. In this report, we physically manipulated the proximity of the mitotic apparatus (MA) to the cell cortex in combination with microinjection of effectors of the spindle checkpoint and CDK1 activity to determine how the initiation of cytokinesis is coupled to the onset of anaphase and mitotic exit. Whereas precocious contact between the MA and the cell surface advanced the onset of cytokinesis into early anaphase A, furrowing could not be advanced prior to the metaphase-anaphase transition. Additionally, while cells arrested in anaphase could be induced to initiate cleavage furrows, cells arrested in metaphase could not. Finally, activation of the mitotic checkpoint in one spindle of a binucleate cell failed to arrest cytokinesis induced by the control spindle but did inhibit the formation of furrows between the arrested MA and the control, nonarrested MA. Our experiments suggest that the competence of the mitotic apparatus to initiate cytokinesis is not dependent on cyclin degradation but does require anaphase-promoting complex (APC) activity and, thus, inactivation of the mitotic checkpoint.  相似文献   

17.
Previous results from our laboratory have shown that 1) cultured rat cells contain two classes of tropomyosin (TM), one (high Mr TMs) with higher Mr values and greater affinity for actin than the other (low Mr TMs); 2) presaturation of F-actin with high Mr TMs, but not with low Mr TMs, inhibits both actin-severing and actin binding activities of gelsolin; and 3) nonmuscle caldesmon not only enhances the inhibitory effects of high Mr TMs but also makes low Mr TMs capable of inhibiting the severing activity of gelsolin (Ishikawa, R., Yamashiro, S., and Matsumura, F. (1989) J. Biol. Chem. 264, 7490-7497). These results suggest that gelsolin has much lower affinity for F-actin-TM-caldesmon complexes than for pure F-actin. We have therefore examined whether addition of TM and/or caldesmon to gelsolin-severed actin filaments can make gelsolin dissociate from barbed ends of actin filaments, resulting in annealing of short actin filaments into long ones. Flow birefringence and electron microscopic studies have suggested that high Mr TMs slowly and partially anneal gelsolin-severed actin fragments in 3 h, whereas low Mr TMs have no effects. Nonmuscle caldesmon greatly potentiates the effects of high Mr TMs and accelerates the process to 20 min, whereas nonmuscle caldesmon alone shows no effects. Furthermore, nonmuscle caldesmon makes low Mr TMs capable of reversing gelsolin-severing action. Actin binding assay has shown that gelsolin (or a gelsolin-actin complex) is dissociated from these annealed actin filaments. Smooth muscle TM and smooth muscle caldesmon also appear to anneal gelsolin-severed actin fragments as do high Mr TMs and nonmuscle caldesmon. Calmodulin decreases the potentiation effects of caldesmon as calmodulin inhibits actin binding of caldesmon. These results suggest that tropomyosin and caldesmon may regulate both capping and severing activities of gelsolin.  相似文献   

18.
We have tested whether cytokinesis is as sensitive to hydrophobic interactions as karyokinesis, and evaluated the usefulness of the frequency of binucleated cells as end-point. Treating cultured cells for 2 or 24 h, with different lipophilic alcohols and chlorinated hydrocarbons made this possible. Colcemid and cytochalasin B were applied as positive controls for inhibition of karyokinesis and cytokinesis, respectively. Several-fold increases of binucleated cells could be seen with cytochalasin B after 2 h of treatment, while there was no increase with colcemid, which instead blocked cells in prometaphase/metaphase. The solvent acted primarily through hydrophobic interactions. For each solvent, the blocking of cells in prometaphase/metaphase and a minor increase in binucleated cells, were seen at approximately the same concentration; the binucleated cells probably emanated from cells in anaphase/telophase at the start of treatment. We conclude that the spindle function and cleavage show similar sensitivity to hydrophobic interactions. After prolonged treatment, allowing escape from the metaphase block, the solvents induced binucleated and multinucleated cells. By forming the quotient between multinucleated (MULTI) and binucleated (BIN) cells one could distinguish between effects primarily on the spindle or cytokinesis, respectively. All solvents, and a combination of colcemid and cytochalasin B, showed quotients intermediate between those observed with colcemid (high MULTI/BIN) and cytochalasin B (low MULTI/BIN), respectively. Both protocols revealed the same relationship between lowest active concentration and lipophilicity for the solvents, implying that concentration, not dose were of prime importance. The specific inhibitors acted at low concentrations in relation to lipophilicity, clearly demonstrating their chemical mechanisms. This approach can be used for rapid screening of potential aneugens, distinguishing between routes, and when lipophilicity is known, also reveal the principal mechanism of action, i.e. physico-chemical or chemical.  相似文献   

19.
How microtubules act to position the plane of cell division during cytokinesis is a topic of much debate. Recently, we showed that a subpopulation of stable microtubules extends past chromosomes and interacts with the cell cortex at the site of furrowing, suggesting that these stabilized microtubules may stimulate contractility. To test the hypothesis that stable microtubules can position furrows, we used taxol to rapidly suppress microtubule dynamics during various stages of mitosis in PtK1 cells. Cells with stabilized prometaphase or metaphase microtubule arrays were able to initiate furrowing when induced into anaphase by inhibition of the spindle checkpoint. In these cells, few microtubules contacted the cortex. Furrows formed later than usual, were often aberrant, and did not progress to completion. Images showed that furrowing correlated with the presence of one or a few stable spindle microtubule plus ends at the cortex. Actin, myosin II, and anillin were all concentrated in these furrows, demonstrating that components of the contractile ring can be localized by stable microtubules. Inner centromere protein (INCENP) was not found in these ingressions, confirming that INCENP is dispensable for furrow positioning. Taxol-stabilization of the numerous microtubule-cortex interactions after anaphase onset delayed furrow initiation but did not perturb furrow positioning. We conclude that taxol-stabilized microtubules can act to position the furrow and that loss of microtubule dynamics delays the timing of furrow onset and prevents completion. We discuss our findings relative to models for cleavage stimulation.  相似文献   

20.
We have cloned a full-length cDNA encoding a novel myosin II heavy chain kinase (mhckC) from Dictyostelium. Like other members of the myosin heavy chain kinase family, the mhckC gene product, MHCK C, has a kinase domain in its N-terminal half and six WD repeats in the C-terminal half. GFP-MHCK C fusion protein localized to the cortex of interphase cells, to the cleavage furrow of mitotic cells, and to the posterior of migrating cells. These distributions of GFP-MHCK C always corresponded with that of myosin II filaments and were not observed in myosin II-null cells, where GFP-MHCK C was diffusely distributed in the cytoplasm. Thus, localization of MHCK C seems to be myosin II-dependent. Cells lacking the mhckC gene exhibited excessive aggregation of myosin II filaments in the cleavage furrows and in the posteriors of the daughter cells once cleavage was complete. The cleavage process of these cells took longer than that of wild-type cells. Taken together, these findings suggest MHCK C drives the disassembly of myosin II filaments for efficient cytokinesis and recycling of myosin II that occurs during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号