首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The age-dependent features in the state of skin microvascular bed has been studied with laser Doppler flowmetry in healthy volunteers of different age groups. To reveal the reaction of skin blood flow in response to short-term ischemia, the occlusive test has been carried out. To estimate the contribution of rhythmic components to blood flow signal, continuous wavelet-transform spectral analysis was used. Age-dependent increase of pulse-wave amplitude and decrease of respiratory wave amplitude reflecting age-dependent changes in functioning of arteriolar and venular links of microvascular bed have been observed at rest. In response to short-term ischemia the age-dependent reduction of reserve resources has been revealed in functioning of arteriolar link of microvascular bed. The reduction of activity of myogenic, neurogenic and endothelial regulation systems have been shown at rest in ageing.  相似文献   

4.
The influence of different types of maneuvers that can induce sudden changes of arterial blood pressure (ABP) on the cerebral blood flow velocity (CBFV) response was studied in 56 normal subjects (mean age 62 yr, range 23-80). ABP was recorded in the finger with a Finapres device, and bilateral recordings of CBFV were performed with Doppler ultrasound of the middle cerebral arteries. Recordings were performed at rest (baseline) and during the thigh cuff test, lower body negative pressure, cold pressor test, hand grip, and Valsalva maneuver. From baseline recordings, positive and negative spontaneous transients were also selected. Stability of PCO2 was monitored with transcutaneous measurements. Dynamic autoregulatory index (ARI), impulse, and step responses were obtained for 1-min segments of data for the eight conditions by fitting a mathematical model to the ABP-CBFV baseline and transient data (Aaslid's model) and by the Wiener-Laguerre moving-average method. Impulse responses were similar for the right- and left-side recordings, and their temporal pattern was not influenced by type of maneuver. Step responses showed a sudden rise at time 0 and then started to fall back to their original level, indicating an active autoregulation. ARI was also independent of the type of maneuver, giving an overall mean of 4.7 +/- 2.9 (n = 602 recordings). Amplitudes of the impulse and step responses, however, were significantly influenced by type of maneuver and were highly correlated with the resistance-area product before the sudden change in ABP (r = -0.93, P < 0.0004). These results suggest that amplitude of the CBFV step response is sensitive to the point of operation of the instantaneous ABP-CBFV relationship, which can be shifted by different maneuvers. Various degrees of sympathetic nervous system activation resulting from different ABP-stimulating maneuvers were not reflected by CBFV dynamic autoregulatory responses within the physiological range of ABP.  相似文献   

5.
6.
7.
Aging is associated with impaired immunity and reduced host defenses. Mitochondrial bioenergetic dysfunctions and reduced antioxidative ability of immunocompetent cells may contribute to this phenomenon. In this study, 60 healthy volunteers of different age groups donated their blood after overnight fasting. Leukocytes were subjected to oxidative injuries by exposure to t-butylhydroperoxide, and were labeled with fluorochromes for measuring mitochondria transmembrane potential (Δωm), membrane peroxidation and mitochondrial oxidant formation. Δωm declined after t-butylhydroperoxide exposure, and the change was more prominent in leukocytes from older individuals. Cyclosporin A partly restored Δωm, implying the contributing role of mitochondrial permeability transition pores. The mitochondrial depolarization was accompanied by increased oxidant formation and oxidation of pyridine nucleotides, which were more prominent in older subjects. The results support the view that the bioenergetic functions of mitochondria are more susceptible to oxidative injury in aged individuals. The decreased ability of leukocytes to resist oxidative stress may contribute to immunosenescence in humans.  相似文献   

8.
9.
李红东  洪贵妮  郭政 《遗传》2015,37(2):165-173
机体老化与癌症、神经退行性疾病等许多复杂疾病相关。目前,研究者已在外周全血中识别了大量的与老化相关的DNA甲基化标记,这些标记可能反映外周血白细胞在机体老化过程中发生的变化,也可能反映外周血中与年龄相关的细胞构成比例的变化。文章利用3组正常个体外周全血DNA甲基化谱,采用Spearman秩相关分析识别了与老化相关的CpG甲基化位点(age-related DNA methylation CpG sites, arCpGs)并评价了其可重复性;利用去卷积算法估计了各外周血样本中髓性和淋巴性细胞的比例并分析了其与年龄的相关性;比较了在外周全血、CD4+T细胞和CD14+单核细胞中识别的arCpGs的一致性。结果显示,在独立外周全血数据中识别的arCpGs具有显著的可重复性(超几何检验,P=1.65×10-11)。外周血髓性和淋巴性细胞的比例分别与年龄显著正、负相关(Spearman秩相关检验,P<0.05,r≤0.22),它们间DNA甲基化水平差异较大的CpG位点倾向于在外周全血中被识别为arCpGs。在CD4+T细胞中识别的arCpGs与在外周全血中识别的arCpGs显著交叠(超几何检验,P=6.14×10-12),且99.1%的交叠位点在CD4+T细胞及外周全血中的DNA甲基化水平与年龄的正、负相关性一致。尽管在CD14+单核细胞中识别的arCpGs与在外周全血中识别的arCpGs并不显著交叠,但是在交叠的51个arCpGs中,有90.1%的位点在CD14+单核细胞、外周全血以及CD4+T细胞中的DNA甲基化水平与年龄的正、负相关性一致,提示它们可能主要反映细胞间共同的改变。在外周全血中识别的arCpGs主要反映某些白细胞共同或特异的DNA甲基化改变,但是也有一部分反映外周血细胞比例构成的变化。  相似文献   

10.
Although a multitude of factors that influence skeletal muscle blood flow have been extensively investigated, the influence of muscle length on limb blood flow has received little attention. Thus the purpose of this investigation was to determine if cyclic changes in muscle length influence resting blood flow. Nine healthy men (28 ± 4 yr of age) underwent a passive knee extension protocol during which the subjects' knee joint was passively extended and flexed through 100-180° knee joint angle at a rate of 1 cycle per 30 s. Femoral blood flow, cardiac output (CO), heart rate (HR), stroke volume (SV), and mean arterial pressure (MAP) were continuously recorded during the entire protocol. These measurements revealed that slow passive changes in knee joint angle did not have a significant influence on HR, SV, MAP, or CO; however, net femoral blood flow demonstrated a curvilinear increase with knee joint angle (r(2) = 0.98) such that blood flow increased by ~90% (125 ml/min) across the 80° range of motion. This net change in blood flow was due to a constant antegrade blood flow across knee joint angle and negative relationship between retrograde blood flow and knee joint angle (r(2) = 0.98). Thus, despite the absence of central hemodynamic changes and local metabolic factors, blood flow to the leg was altered by changes in muscle length. Therefore, when designing research protocols, researchers need to be cognizant of the fact that joint angle, and ultimately muscle length, influence limb blood flow.  相似文献   

11.
Variants of postural tachycardia syndrome (POTS) are associated with increased ["high-flow" POTS (HFP)], decreased ["low-flow" POTS (LFP)], and normal ["normal-flow" POTS (NFP)] blood flow measured in the lower extremities while subjects were in the supine position. We propose that postural tachycardia is related to thoracic hypovolemia during orthostasis but that the patterns of peripheral blood flow relate to different mechanisms for thoracic hypovolemia. We studied 37 POTS patients aged 14-21 yr: 14 LFP, 15 NFP, and 8 HFP patients and 12 healthy control subjects. Peripheral blood flow was measured in the supine position by venous occlusion strain-gauge plethysmography of the forearm and calf to subgroup patients. Using indocyanine green techniques, we showed decreased cardiac index (CI) and increased total peripheral resistance (TPR) in LFP, increased CI and decreased TPR in HFP, and unchanged CI and TPR in NFP while subjects were supine compared with control subjects. Blood volume tended to be decreased in LFP compared with control subjects. We used impedance plethysmography to assess regional blood volume redistribution during upright tilt. Thoracic blood volume decreased, whereas splanchnic, pelvic, and leg blood volumes increased, for all subjects during orthostasis but were markedly lower than control for all POTS groups. Splanchnic volume was increased in NFP and LFP. Pelvic blood volume was increased in HFP only. Calf volume was increased above control in HFP and LFP. The results support the hypothesis of (at least) three pathophysiologic variants of POTS distinguished by peripheral blood flow related to characteristic changes in regional circulations. The data demonstrate enhanced thoracic hypovolemia during upright tilt and confirm that POTS is related to inadequate cardiac venous return during orthostasis.  相似文献   

12.
To examine the influence of pulmonary blood flow (Qp) on spontaneous ventilation (VE), we isolated the systemic and pulmonary circulations and controlled the arterial blood gases and blood flow (Q) in each circuit as we measured VE. Each dog was anesthetized with ketamine and maintained with halothane. Systemic Q was drained from the right atrium and pumped through an oxygenator and heat exchanger and returned to the aorta. An identical bypass was established for the pulmonary circulation, draining blood from the left atrium and pumping it to the pulmonary artery. The heart was fibrillated, all cannulas were brought through the chest wall, and the median sternotomy was closed. The dog was then allowed to breathe spontaneously. The arterial O2 partial pressure (PO2) of both circuits was maintained greater than 300 Torr. Systemic Q was maintained at 0.080 l X min-1 X kg-1. Initially the arterial CO2 partial pressure (PCO2) of both circuits was set at 40 Torr as Qp was varied randomly between approximately 0.025 and 0.175 l X min-1 X kg-1. The average VE-Qp relationship was linear with a slope of 1.45 (P less than 0.0005). Increasing the arterial PCO2 of both circuits to 60 Torr elevated VE an average of 0.37 l X min-1 X kg-1 at each level of Qp (P less than 0.0005). Vagotomy abolished the effect of Qp on VE. Increasing Qp affected the systemic arterial PCO2-VE response curve by shifting it upward without altering its slope. These results demonstrate that increases in Qp are associated with increases in VE. This phenomenon may contribute to exercise hyperpnea.  相似文献   

13.
14.
15.
16.
17.
Human exposure to microcystins, which are produced by freshwater cyanobacterial species, is of growing concern due to increasing appearance of cyanobacterial blooms as a consequence of global warming and increasing water eutrophication. Although microcystins are considered to be liver-specific, there is evidence that they may also affect other tissues. These substances have been shown to induce DNA damage in vitro and in vivo, but the mechanisms of their genotoxic activity remain unclear. In human peripheral blood lymphocytes (HPBLs) exposure to non-cytotoxic concentrations (0, 0.1, 1 and 10μg/ml) of microcystin-LR (MCLR) induced a dose- and time-dependent increase in DNA damage, as measured with the comet assay. Digestion of DNA from MCLR-treated HPBLs with purified formamidopyrimidine-DNA glycosylase (Fpg) displayed a greater number of DNA strand-breaks than non-digested DNA, confirming the evidence that MCLR induces oxidative DNA damage. With the cytokinesis-block micronucleus assay no statistically significant induction of micronuclei, nucleoplasmic bridges and nuclear buds was observed after a 24-h exposure to MCLR. At the molecular level, no changes in the expression of selected genes involved in the cellular response to DNA damage and oxidative stress were observed after a 4-h exposure to MCLR (1μg/ml). After 24h, DNA damage-responsive genes (p53, mdm2, gadd45a, cdkn1a), a gene involved in apoptosis (bax) and oxidative stress-responsive genes (cat, gpx1, sod1, gsr, gclc) were up-regulated. These results provide strong support that MCLR is an indirectly genotoxic agent, acting via induction of oxidative stress, and that lymphocytes are also the target of microcystin-induced toxicity.  相似文献   

18.
Analysis of home and foreign literature underlies the discussion of the significance of cytogenetic variations (frequency of aberrant cells and SCE-heteromorphism of C-chromatin and brittleness of chromosomes as indices of chromosome instability in oncological patients.  相似文献   

19.
The naturally occurring milk sphingomyelin is of particular interest owing to its complex composition and involvement in the formation of the milk fat globule membrane (MFGM). Knowledge of membrane organization and nanomechanical stability has proved to be crucial in understanding their properties and functions. In this work, two model membrane systems composed of 1, 2 dioleoyl-sn-glycero-3-phosphocholine (DOPC), egg sphingomyelin (egg-SM) and cholesterol, and DOPC, milk sphingomyelin (milk-SM) and cholesterol were exposed to both RT and 10 °C. The morphological and nanomechanical changes were investigated using atomic force microscopy (AFM) imaging and force mapping below RT using a designed liquid cell with temperature-control. In both systems, the size and shape of SM/Chol-enriched liquid ordered domains (Lo) and DOPC-enriched liquid disordered phase (Ld) were monitored at controlled temperatures. AFM based force-mapping showed that rupture forces were consistently higher for Lo domains than Ld phases and were decreased for Ld with decreasing temperature while an increase in breakthrough force was observed in Lo domains. More interestingly, dynamic changes and defect formations in the hydrated lipid bilayers were mostly detected at low temperature, suggesting a rearrangement of lipid molecules to relieve additional tension introduced upon cooling. Noteworthy, in these model membrane systems, tension-driven defects generally heal on reheating the sample. The results of this work bring new insights to low temperature induced membrane structural reorganization and mechanical stability changes which will bring us one step closer to understand more complex systems such as the MFGM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号