首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag recognition by the TCR determines the subsequent fate of the T cell and is regulated by the involvement of other cell surface molecules, termed coreceptors. CD229 is a lymphocyte cell surface molecule that belongs to the CD150 family of receptors. Upon tyrosine phosphorylation, CD229 recruits various signaling molecules to the membrane. One of these molecules is the signaling lymphocytic activation molecule-associated protein, of which a deficiency leads to the X-linked lymphoproliferative syndrome. We report that CD229 interacts in a phosphorylation-dependent manner with Grb2. We mapped this interaction showing that the Src homology 2 domain of Grb2 and the tyrosine residue Y606 in CD229 are required for CD229-Grb2 complex formation. The Grb2 motif in the cytoplasmic tail of CD229 is distinct and independent from the two tyrosines required for efficient signaling lymphocytic activation molecule-associated protein recruitment. CD229, but not other members of the CD150 family, directly bound Grb2. We also demonstrate that CD229 precipitates with Grb2 in T lymphocytes after pervanadate treatment, as well as CD229 or TCR ligation. Interestingly, the CD229 mutant lacking the Grb2 binding site is not internalized after CD229 engagement with specific Abs. Moreover, a dominant negative form of Grb2 (containing only Src homology 2 domain) impaired CD229 endocytosis. Unexpectedly, Erk phosphorylation was partially inhibited after activation of CD229 plus CD3. Consistent with this, CD229 ligation partially inhibited TCR signaling in peripheral blood cells and CD229-Jurkat cells transfected with the 3XNFAT-luciferase reporter construct. Altogether, the data suggest a model whereby CD229 ligation attenuates TCR signaling and Grb2 recruitment to CD229 controls its rate of internalization.  相似文献   

2.
CDw150, a receptor up-regulated on activated T or B lymphocytes, has a key role in regulating B cell proliferation. Patients with X-linked lymphoproliferative disease have mutations in a gene encoding a protein, DSHP/SAP, which interacts with CDw150 and is expressed in B cells. Here we show that CDw150 on B cells associates with two tyrosine-phosphorylated proteins, 59 kDa and 145 kDa in size. The 59-kDa protein was identified as the Src-family kinase Fgr. The 145-kDa protein is the inositol polyphosphate 5'-phosphatase, SH2-containing inositol phosphatase (SHIP). Both Fgr and SHIP interact with phosphorylated tyrosines in CDw150's cytoplasmic tail. Ligation of CDw150 induces the rapid dephosphorylation of both SHIP and CDw150 as well as the association of Lyn and Fgr with SHIP. CD95/Fas-mediated apoptosis is enhanced by signaling via CDw150, and CDw150 ligation can override CD40-induced rescue of CD95-mediated cell death. The ability of CDw150 to regulate cell death does not correlate with serine phosphorylation of the Akt kinase, but does correlate with SHIP tyrosine dephosphorylation. Thus, the CDw150 receptor may function to regulate the fate of activated B cells via SHIP as well as via the DSHP/SAP protein defective in X-linked lymphoproliferative disease patients.  相似文献   

3.
The SLAM family of human genes currently consists of seven related members of the immunoglobulin superfamily, membrane-associated proteins, including CD150 (SLAM), CD244 (2B4), CD84, CD229 ( Ly-9), BLAME, CD48, and 19A. These genes are expressed to varying degrees in subsets of immune cells (T, B, natural killer, and myeloid cells) and may function as ligands or receptors. This set of genes, related to CD2 and CD58 on Chromosome (Chr) 1p98, are found clustered close together in the human genome on Chr 1q22. Four of these family members (CD150, CD244, CD84, CD229) contain conserved tyrosine motifs in their cytoplasmic tails that enable them to bind intracellular signaling molecules SAP and EAT-2. SAP is mutated in human X-linked lymphoproliferative disease (XLP), and studies in XLP patients have shown that improper signaling via molecules that bind SAP contributes to the disease. We have identified two new members of the SLAM family (SF), which we term SF2000 and SF2001, which are expressed in immune cells and map in the SLAM gene cluster. SF2001 does not contain SAP-binding motifs in its short cytoplasmic tail. SF2000, which is co-expressed with SAP in T cells, binds both SAP and EAT-2. The data suggest that signaling through SF2000, together with CD150, CD244, CD84, and CD229, is controlled by SAP and therefore contributes to the pathogenesis of XLP.  相似文献   

4.
CD229 is a member of the CD150 family of the Ig superfamily expressed on T and B cells. Receptors of this family regulate cytokine production and cytotoxicity of lymphocytes and NK cells. The cytoplasmic tail of CD229 binds to SAP, a protein that is defective in X-linked lymphoproliferative syndrome. To identify the CD229 ligand, we generated a soluble Ig fusion protein containing the two N-terminal extracellular domains of human CD229 (CD229-Ig). CD229-Ig bound to CD229-transfected cells, whereas no binding was detected on cells expressing other CD150 family receptors, showing that CD229 binds homophilically. Both human and mouse CD229 interacted with itself. Domain deletion mutants showed that the N-terminal Ig-domain mediates homophilic adhesion. CD229-CD229 binding was severely compromised when the charged amino acids E27 and E29 on the predicted B-C loop and R89 on the F-G loop of the N-terminal domain were mutated to alanine. In contrast, one mutation, R44A, enhanced the homophilic interaction. Confocal microscopy image analysis revealed relocalization of CD229 to the contact area of T and B cells during Ag-dependent immune synapse formation. Thus, CD229 is its own ligand and participates in the immunological synapse.  相似文献   

5.
The T and natural killer (NK) cell-specific gene SAP (SH2D1A) encodes a 'free SH2 domain' that binds a specific tyrosine motif in the cytoplasmic tail of SLAM (CD150) and related cell surface proteins. Mutations in SH2D1A cause the X-linked lymphoproliferative disease, a primary immunodeficiency. Here we report that a second gene encoding a free SH2 domain, EAT-2, is expressed in macrophages and B lympho cytes. The EAT-2 structure in complex with a phosphotyrosine peptide containing a sequence motif with Tyr281 of the cytoplasmic tail of CD150 is very similar to the structure of SH2D1A complexed with the same peptide. This explains the high affinity of EAT-2 for the pTyr motif in the cytoplasmic tail of CD150 but, unlike SH2D1A, EAT-2 does not bind to non-phosphorylated CD150. EAT-2 binds to the phosphorylated receptors CD84, CD150, CD229 and CD244, and acts as a natural inhibitor, which interferes with the recruitment of the tyrosine phosphatase SHP-2. We conclude that EAT-2 plays a role in controlling signal transduction through at least four receptors expressed on the surface of professional antigen-presenting cells.  相似文献   

6.
CD150 (SLAM/IPO-3) is a cell surface receptor that, like the B cell receptor, CD40, and CD95, can transmit positive or negative signals. CD150 can associate with the SH2-containing inositol phosphatase (SHIP), the SH2-containing protein tyrosine phosphatase (SHP-2), and the adaptor protein SH2 domain protein 1A (SH2D1A/DSHP/SAP, also called Duncan's disease SH2-protein (DSHP) or SLAM-associated protein (SAP)). Mutations in SH2D1A are found in X-linked lymphoproliferative syndrome and non-Hodgkin's lymphomas. Here we report that SH2D1A is expressed in tonsillar B cells and in some B lymphoblastoid cell lines, where CD150 coprecipitates with SH2D1A and SHIP. However, in SH2D1A-negative B cell lines, including B cell lines from X-linked lymphoproliferative syndrome patients, CD150 associates only with SHP-2. SH2D1A protein levels are up-regulated by CD40 cross-linking and down-regulated by B cell receptor ligation. Using GST-fusion proteins with single replacements of tyrosine at Y269F, Y281F, Y307F, or Y327F in the CD150 cytoplasmic tail, we found that the same phosphorylated Y281 and Y327 are essential for both SHP-2 and SHIP binding. The presence of SH2D1A facilitates binding of SHIP to CD150. Apparently, SH2D1A may function as a regulator of alternative interactions of CD150 with SHP-2 or SHIP via a novel TxYxxV/I motif (immunoreceptor tyrosine-based switch motif (ITSM)). Multiple sequence alignments revealed the presence of this TxYxxV/I motif not only in CD2 subfamily members but also in the cytoplasmic domains of the members of the SHP-2 substrate 1, sialic acid-binding Ig-like lectin, carcinoembryonic Ag, and leukocyte-inhibitory receptor families.  相似文献   

7.
Cell surface receptors belonging to the CD2 subset of the Ig superfamily of molecules include CD2, CD48, CD58, 2B4, signaling lymphocytic activation molecule (SLAM), Ly9, CD84, and the recently identified molecules NTB-A/Ly108/SLAM family (SF) 2000, CD84H-1/SF2001, B lymphocyte activator macrophage expressed (BLAME), and CRACC (CD2-like receptor-activating cytotoxic cells)/CS-1. Some of these receptors, such as CD2, SLAM, 2B4, CRACC, and NTB-A, contribute to the activation and effector function of T cells and NK cells. Signaling pathways elicited via some of these receptors are believed to involve the Src homology 2 (SH2) domain-containing cytoplasmic adaptor protein SLAM-associated protein (SAP), as it is recruited to SLAM, 2B4, CD84, NTB-A, and Ly-9. Importantly, mutations in SAP cause the inherited human immunodeficiency X-linked lymphoproliferative syndrome (XLP), suggesting that XLP may result from perturbed signaling via one or more of these SAP-associating receptors. We have now studied the requirements for SAP recruitment to CD84 and lymphocyte activation elicited following ligation of CD84 on primary and transformed human T cells. CD84 was found to be rapidly tyrosine phosphorylated following receptor ligation on activated T cells, an event that involved the Src kinase Lck. Phosphorylation of CD84 was indispensable for the recruitment of SAP, which was mediated by Y(262) within the cytoplasmic domain of CD84 and by R(32) within the SH2 domain of SAP. Furthermore, ligating CD84 enhanced the proliferation of anti-CD3 mAb-stimulated human T cells. Strikingly, this effect was also apparent in SAP-deficient T cells obtained from patients with XLP. These results reveal a novel function of CD84 on human lymphocytes and suggest that CD84 can activate human T cells via a SAP-independent mechanism.  相似文献   

8.
X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency characterized by extreme susceptibility to Epstein-Barr virus. The XLP disease gene product SH2D1A (SAP) interacts via its SH2 domain with a motif (TIYXXV) present in the cytoplasmic tail of the cell-surface receptors CD150/SLAM, CD84, CD229/Ly-9, and CD244/2B4. Characteristically, the SH2D1A three-pronged interaction with Tyr(281) of CD150 can occur in absence of phosphorylation. Here we analyze the effect of SH2D1A protein missense mutations identified in 10 XLP families. Two sets of mutants were found: (i) mutants with a marked decreased protein half-life (e.g. Y7C, S28R, Q99P, P101L, V102G, and X129R) and (ii) mutants with structural changes that differently affect the interaction with the four receptors. In the second group, mutations that disrupt the interaction between the SH2D1A hydrophobic cleft and Val +3 of its binding motif (e.g. T68I) and mutations that interfere with the SH2D1A phosphotyrosine-binding pocket (e.g. C42W) abrogated SH2D1A binding to all four receptors. Surprisingly, a mutation in SH2D1A able to interfere with Thr -2 of the CD150 binding motif (mutant T53I) severely impaired non-phosphotyrosine interactions while preserving unaffected the binding of SH2D1A to phosphorylated CD150. Mutant T53I, however, did not bind to CD229 and CD224, suggesting that SH2D1A controls several critical signaling pathways in T and natural killer cells. Because no correlation is present between identified types of mutations and XLP patient clinical presentation, additional unidentified genetic or environmental factors must play a strong role in XLP disease manifestations.  相似文献   

9.
CD5 is a key regulator of Ag receptor-mediated activation, selection, and differentiation in both T and B cells. Accumulating evidence indicates that lymphocyte activation and selection are sensitive to variations in levels of CD5 on the cell surface. We now show that CD5 expression on the surface of B and T cells is regulated posttranslationally by direct interaction with the mu(2) subunit of the AP2 adaptor complex that links transmembrane proteins to clathrin-coated pits. CD5 is rapidly internalized from the cell surface in lymphoid cell lines, mature splenic T and B cells, and peritoneal CD5(+) B cells following monovalent or bivalent ligation of the receptor. We mapped the mu(2) subunit binding site on CD5 to Y(429) and determined that the integrity of this site was necessary for CD5 internalization. Cross-linking of the Ag receptor with intact Abs inhibited CD5 internalization in B cells, but had the opposite effect in T cells. However, if F(ab')(2) Abs were used to stimulate the Ag receptor in B cells, the effect on CD5 internalization was now similar to that observed in T cells, indicating that signals through the Ag receptor and FcR regulate CD5 endocytosis in B cells. This was confirmed using an FcgammaRIIB1-deficient B cell line. The ability to differentially alter posttranslational CD5 expression in T and B cells is likely to be key in regulation of Ag receptor signaling and generation of tolerance in T and B lymphocytes.  相似文献   

10.
Adaptor proteins, molecules that mediate intermolecular interactions, are crucial for cellular activation. The adaptor 3BP2 has been shown to positively regulate NK cell-mediated cytotoxicity. In this study we present evidence for a physical interaction between 3BP2 and the CD244 receptor. CD244, a member of the CD150 family, is a cell surface protein expressed on NK, CD8+ T, and myeloid cells. CD244 interacts via its Src homology 2 domain with the X-linked lymphoproliferative disease gene product signaling lymphocytic activation molecule-associated protein (SAP)/SH2 domain protein 1A. 3BP2 interacts with human but not murine CD244. CD244-3BP2 interaction was direct and regulated by phosphorylation, as shown by a three-hybrid analysis in yeast and NK cells. Tyr337 on CD244, part of a consensus motif for SAP/SH2 domain protein 1A binding, was critical for the 3BP2 interaction. Although mutation of Tyr337 to phenylalanine abrogated human 3BP2 binding, we still observed SAP association, indicating that this motif is not essential for SAP recruitment. CD244 ligation induced 3BP2 phosphorylation and Vav-1 recruitment. Overexpression of 3BP2 led to an increase in the magnitude and duration of ERK activation, after CD244 triggering. This enhancement was concomitant with an increase in cytotoxicity due to CD244 ligation. However, no differences in IFN-gamma secretion were found when normal and 3BP2-transfected cells were compared. These results indicate that CD244-3BP2 association regulates cytolytic function but not IFN-gamma release, reinforcing the hypothesis that, in humans, CD244-mediated cytotoxicity and IFN-gamma release involve distinct NK pathways.  相似文献   

11.
Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex.  相似文献   

12.
Signaling lymphocyte activation molecule (SLAM) family receptors are critically involved in modulating innate and adaptive immune responses. Several SLAM family receptors have been shown to interact with the adaptor molecule SAP; however, subsequent intracellular signaling is poorly defined. Notably, mutations in SLAM-associated protein (SAP) lead to X-linked lymphoproliferative disease, a rare but fatal immunodeficiency. Although the SLAM family member Ly9 (CD229) is known to interact with SAP, the functions of this receptor have remained elusive. Therefore, we have generated Ly9-/- mice and compared their phenotype with that of SLAM-/- and SAP-/- mice. We report that Ly9-/- T cells exhibit a mild Th2 defect associated with reduced IL-4 production after stimulation with anti-TCR and anti-CD28 in vitro. This defect is similar in magnitude to the previously reported Th2 defect in SLAM-/- mice but is more subtle than that observed in SAP-/- mice. In contrast to SLAM-/- and SAP-/- mice, T cells from Ly9-/- mice proliferate poorly and produce little IL-2 after suboptimal stimulation with anti-CD3 in vitro. We have also found that Ly9-/- macrophages exhibit no defects in cytokine production or bacterial killing as was observed in SLAM-/- macrophages. Additionally, Ly9-/- mice differ from SAP-/- mice in that they foster normal development of NKT cells and mount appropriate T and B cell responses to lymphocytic choriomeningitis virus. We have identified significant phenotypic differences between Ly-9-/- mice as compared with both SLAM-/- and SAP-/- mice. Although Ly9, SLAM, and SAP play a common role in promoting Th2 polarization, Ly-9 is uniquely involved in enhancing T cell activation.  相似文献   

13.
Some CD2 family receptors stimulate NK cell-mediated cytotoxicity through a signaling pathway, which is dependent on the recruitment of an adapter protein called SLAM-associated protein (SAP). In this work we identify a novel leukocyte cell surface receptor of the CD2 family called CD2-like receptor activating cytotoxic cells (CRACC). CRACC is expressed on cytotoxic lymphocytes, activated B cells, and mature dendritic cells, and activates NK cell-mediated cytotoxicity. Remarkably, although CRACC displays cytoplasmic motifs similar to those recruiting SAP, CRACC-mediated cytotoxicity occurs in the absence of SAP and requires activation of extracellular signal-regulated kinases-1/2. Thus, CRACC is a unique CD2-like receptor which mediates NK cell activation through a SAP-independent extracellular signal-regulated kinase-mediated pathway.  相似文献   

14.
X-linked lymphoproliferative syndrome (XLP) is an immunodeficiency characterized by life-threatening infectious mononucleosis and EBV-induced B cell lymphoma. The gene mutated in XLP encodes SLAM (signaling lymphocytic activation molecule-associated protein)-associated protein (SAP), a small SH2 domain-containing protein. SAP associates with 2B4 and SLAM, activating receptors expressed by NK and T cells, and prevents recruitment of SH2 domain-containing protein tyrosine phosphatase-2 SHP-2) to the cytoplasmic domains of these receptors. The phenotype of XLP may therefore result from perturbed signaling through SAP-associating receptors. We have addressed the functional consequence of SAP deficiency on 2B4-mediated NK cell activation. Ligating 2B4 on normal human NK cells with anti-2B4 mAb or interaction with transfectants bearing the 2B4 ligand CD48 induced NK cell cytotoxicity. In contrast, ligation of 2B4 on NK cells from a SAP-deficient XLP patient failed to initiate cytotoxicity. Despite this, CD2 or CD16-induced cytotoxicity of SAP-deficient NK cells was similar to that of normal NK cells. Thus, selective impairment of 2B4-mediated NK cell activation may contribute to the immunopathology of XLP.  相似文献   

15.
X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency caused by mutations in SH2D1A which encodes SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved. We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both SAP(+) and SAP(-) cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8(+) T cells specific for CMV and influenza were distributed across SAP(+) and SAP(-) populations, EBV-specific cells were exclusively SAP(+). The preferential recruitment of SAP(+) cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP expression in CD8(+) T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP(-) clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP(-) CD8(+) T cells, thereby demonstrating that SLAM receptors acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited.  相似文献   

16.
Many cell surface proteins are internalized via dileucine- or tyrosine-based motifs within their cytoplasmic domains by the heterotetrameric adaptor protein complex, AP-2. In this study we have examined how AP-2 mediates internalization of large cell surface receptors, such as the eight-chain TCR:CD3 complex. Although most receptors have a single signal that drives internalization, the TCR complex has two (D/E)xxxL(L/I) motifs and 20 Yxx? motifs. Using 293T cells, we show that AP-2 is completely dependent on both signals to mediate TCR internalization, because deletion of either completely blocks this process. Significant plasticity and redundancy were observed in the use of the Yxx? motifs, with a clear hierarchy in their use (CD3delta > CD3gamma >or= CD3zeta > CD3epsilon). Remarkably, a single, membrane-distal Yxx? motif in CD3delta could mediate approximately 75% of receptor internalization, whereas its removal only reduced internalization by approximately 20%. In contrast, significant rigidity was observed in use of the (D/E)xxxL(L/I) motif in CD3gamma. This was due to an absolute requirement for the position of this signal in the context of the TCR complex and for a highly conserved lysine residue, K128, which is not present in CD3delta. These contrasting requirements suggest a general principle by which AP-2 may mediate the internalization of large, multichain complexes.  相似文献   

17.
18.
The B cell coreceptor CD22 plays an important role in regulating signal transduction via the B cell Ag receptor. Studies have shown that surface expression of CD22 can be modulated in response to binding of ligand (i.e., mAb). Thus, it is possible that alterations in the level of CD22 expression following binding of natural ligand(s) may affect its ability to modulate the Ag receptor signaling threshold at specific points during B cell development and differentiation. Therefore, it is important to delineate the physiologic mechanism by which CD22 expression is controlled. In the current study, yeast two-hybrid analysis was used to demonstrate that CD22 interacts with AP50, the medium chain subunit of the AP-2 complex, via tyrosine-based internalization motifs in its cytoplasmic domain. This interaction was further characterized using yeast two-hybrid analysis revealing that Tyr(843) and surrounding amino acids in the cytoplasmic tail of CD22 comprise the primary binding site for AP50. Subsequent studies using transfectant Jurkat cell lines expressing wild-type or mutant forms of CD22 demonstrated that either Tyr(843) or Tyr(863) is sufficient for mAb-mediated internalization of CD22 and that these motifs are involved in its interaction with the AP-2 complex, as determined by coprecipitation of alpha-adaptin. Finally, experiments were performed demonstrating that treatment of B cells with either intact anti-Ig Ab or F(ab')(2) blocks ligand-mediated internalization of CD22. In conclusion, these studies demonstrate that internalization of CD22 is dependent on its association with the AP-2 complex via tyrosine-based internalization motifs.  相似文献   

19.
The genetic defect in X-linked lymphoproliferative syndrome (XLP) is the Src homology 2 domain-containing protein SAP. SAP constitutively associates with the cell surface molecule, signaling lymphocytic activation molecule (SLAM), and competes with SH2-domain containing protein tyrosine phosphatase-2 (SHP-2) for recruitment to SLAM. SLAM exhibits homology with the mouse cell surface receptor 2B4. The human homologue of 2B4 has now been identified. It is recognized by the c1.7 mAb, a mAb capable of activating human NK cells. Human 2B4 became tyrosine phosphorylated following pervanadate-treatment of transfected cells and recruited SHP-2. SAP was also recruited to 2B4 in activated cells. Importantly, the 2B4-SAP interaction prevented the association between 2B4 and SHP-2. These results suggest that the phenotype of XLP may result from perturbed signaling not only through SLAM, but also other cell surface molecules that utilize SAP as a signaling adaptor protein.  相似文献   

20.
SAP (or SH2D1A), an adaptor-like molecule expressed in immune cells, is composed almost exclusively of a Src homology 2 (SH2) domain. In humans, SAP is mutated and either absent or non-functional in X-linked lymphoproliferative (XLP) syndrome, a disease characterized by an inappropriate response to Epstein-Barr virus (EBV) infection. Through its SH2 domain, SAP associates with tyrosines in the cytoplasmic domain of the SLAM family of immune cell receptors, and is absolutely required for the function of these receptors. This property results from the ability of SAP to promote the selective recruitment and activation of FynT, a cytoplasmic Src-related protein tyrosine kinase (PTK). Here, we demonstrate that SAP operates in this pathway by binding to the SH3 domain of FynT, through a second region in the SAP SH2 domain distinct from the phosphotyrosine-binding motif. We demonstrate that this interaction is essential for SAP-mediated signalling in T cells, and for the capacity of SAP to modulate immune cell function. These observations characterize a biologically important signalling mechanism in which an adaptor molecule composed only of an SH2 domain links a receptor devoid of intrinsic catalytic activity to the kinase required for its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号