首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although neurokinin 1 receptor antagonists prevent ethanol (EtOH)-induced gastric lesions, the mechanisms by which EtOH releases substance P (SP) and SP damages the mucosa are unknown. We hypothesized that EtOH activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to release SP, which stimulates epithelial neurokinin 1 receptors to generate damaging reactive oxygen species (ROS). SP release was assayed in the mouse stomach, ROS were detected using dichlorofluorescein diacetate, and neurokinin 1 receptors were localized by immunofluorescence. EtOH-induced SP release was prevented by TRPV1 antagonism. High dose EtOH caused lesions, and TRPV1 or neurokinin 1 receptor antagonism and neurokinin 1 receptor deletion inhibited lesion formation. Coadministration of low, innocuous doses of EtOH and SP caused lesions by a TRPV1-independent but neurokinin 1 receptor-dependent process. EtOH, capsaicin, and SP stimulated generation of ROS by superficial gastric epithelial cells expressing neurokinin 1 receptors by a neurokinin 1 receptor-dependent mechanism. ROS scavengers prevented lesions induced by a high EtOH dose or a low EtOH dose plus SP. Gastric lesions are caused by an initial detrimental effect of EtOH, which is damaging only if associated with TRPV1 activation, SP release from sensory nerves, stimulation of neurokinin 1 receptors on epithelial cells, and ROS generation.  相似文献   

2.
The purpose of the present study was to determine whether central administration of substance P (SP), a tachykinin neuropeptide, influenced feeding behavior in layer chicks (Gallus gallus). Intracerebroventricular (ICV) injections of 5 nmol SP decreased food intake in 5- and 6-day-old chicks under both ad libitum and 3-h fasting conditions. There are 3 major subtypes of tachykinin receptors, namely, neurokinin 1, 2 and 3 receptors. Injection of neurokinin A and neurokinin B, which are respectively endogenous agonists for neurokinin 2 and 3 receptors, did not suppress feeding behavior in chicks, suggesting that the anorexigenic effect of SP might be mediated by the neurokinin 1 receptor rather than neurokinin 2 and 3 receptors. Chicks that received 5 nmol SP did not change their locomotion, standing, sitting or drinking time, suggesting that its anorexigenic action might not be due to SP-induced hyperactivity or sedation. ICV injection of SP increased water intake, also indicating that SP likely did not affect feeding behavior through malaise. In addition, the anorexigenic effect of SP might not be related to corticotrophin-releasing hormone (CRH) because plasma corticosterone concentration was not affected by ICV injection of SP and co-administration of the CRH receptor antagonist astressin did not affect the anorexigenic effect of SP. The present study suggests that central SP acts as an anorexigenic neuropeptide in chicks.  相似文献   

3.
Pharmacological receptors for substance P and neurokinins   总被引:31,自引:0,他引:31  
The three neurokinins identified in mammals, substance P, neurokinin A and neurokinin B, as well as their C-terminal biologically active fragments, have been used to characterize the responses of a variety of isolated organs. Three preparations selective either for substance P (the dog carotid artery), or for neurokinin A (the rabbit pulmonary artery) or for neurokinin B (the rat portal vein) are described. A neurokinin receptor classification is attempted using the neurokinins and their fragments to determine the order of potency of agonists. Three receptor subtypes have been identified: the NK-P, on which substance P (SP) is more active than neurokinin A (NKA) and neurokinin B (NKB), and the neurokinins are more active than their respective fragments; the NK-A on which NKA greater than NKB greater than SP, and some NKA fragments are more discriminative than their precursor; the NK-B on which NKB greater than NKA greater than SP, and fragments of NKB are less active than their precursor. Among the peptides studied, some potent compounds have been identified that could provide selective receptor ligands.  相似文献   

4.
D Regoli  F Nantel 《Biopolymers》1991,31(6):777-783
The neurokinins are a group of naturally occurring peptides with the common C-terminal sequence Phe-X-Gly-Leu-Met.NH2. They include substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). SP and NKA are coded on the same gene, the PPT-A, while NKB is coded on a separate gene, the PPT-B. Neurokinins are present in the central nervous system and in peripheral organs where they exert various actions. They act on three receptors--NK-1, NK-2, and NK-3--characterized through pharmacological, biochemical, and histochemical studies. Selective agonists for each neurokinin receptor were developed and evaluated on isolated smooth muscle preparations containing only one neurokinin receptor type. All three neurokinin receptors were cloned and expressed in Xenopus oocytes. Relative affinities of those receptors to neurokinins are the same as in their respective smooth muscle preparation. Finally, the mechanism of action of SP on histamine release from rat peritoneal mast cell has been studied and a direct activation of G proteins by peptides with basic amino acids is proposed as a working hypothesis.  相似文献   

5.
A cDNA encoding guinea-pig uterine substance P (SP) receptor has been isolated using the homology screening approach. Northern blot analysis reveals that the corresponding mRNA, of approx. 4.8 kb, is expressed in all tissues tested, but predominantly in the uteri of non-pregnant animals; during pregnancy its expression is reduced. The guinea-pig SP receptor was expressed in COS-7 cells and demonstrated relative ligand affinity in the order: SP much greater than neurokinin A greater than neurokinin B.  相似文献   

6.
In urethane-anaesthetized rats, the intrathecal administration of 6.5 nmol of substance P (SP), neurokinin A (NKA), or neurokinin B (NKB) at the T8-T10 level of the spinal cord enhances mean arterial pressure and heart rate. However, in the pentobarbital-anaesthetized rat, while NKB produces no effect on mean arterial pressure, NKA produces a biphasic change and SP, a depressor response. All three neurokinins elicit a tachycardia. The following rank order of potency SP greater than or equal to NKA greater than NKB is observed in relation to these cardiovascular responses when either one of the two anaesthetics is used. The low cardiovascular activity of NKB cannot be attributed to its hydrophobicity, as the water soluble analogue of NKB, [Arg0]NKB, elicits a response as weak as the native peptide. In pentobarbital-anaesthetized rats, the intrathecal administration of 6.5 nmol of SP, also enhances plasma protein extravasation in cutaneous tissues of the back, the hind paws, and the ears. In this response NKA and NKB are either inactive (skin of hind paws) or less potent than SP (ears and dorsal skin). These findings agree with the hypothesis that in the rat spinal cord, the neurokinin receptor producing changes in mean arterial pressure, heart rate, and vascular permeability is of the NK-1 subtype.  相似文献   

7.
R Mathison  J S Davison 《Life sciences》1989,45(12):1057-1064
This study characterizes the actions of the neurokinins and calcitonin-gene related peptide (CGRP) on electrolyte transport across the mucosa of the guinea pig jejunum in vitro in a modified Ussing chamber. By following changes in short circuit current (Isc) induced by substance P (SP) and neurokinins A & B (NKA & NKB) in the presence and absence of tetrodotoxin (TTX) and atropine, it was established that two distinct neurokinin receptors are involved in the regulation of electrolyte transport. NKA preferentially activates a neuronal receptor since the actions of this neurokinin were inhibited by both TTX and atropine. SP, whose actions were reduced to a lesser extent by TTX and atropine, is considered to activate preferentially a receptor on the epithelial cells. The third neurokinin, NKB, appears to act non-selectively on both the neuronal and epithelial receptors. CGRP, which per se did not affect Isc, markedly potentiated the increases in Isc induced by SP and NKB, and thus acts synergistically with the epithelial neurokinin receptor. These results suggest that two distinct neurokinin receptors (the NK-1 and the NK-2) regulate epithelial transport in the jejunal mucosa of the guinea pig, and furthermore indicate that at least one of the peptides found in enteric nerves (i.e. CGRP) modulates the actions of neurokinins on epithelial cells.  相似文献   

8.
I Iwamoto  J A Nadel 《Life sciences》1989,44(16):1089-1095
To determine the tachykinin receptor subtype that mediates the increase in vascular permeability, we examined the rank order of potency of tachykinins for inducing plasma extravasation in guinea pig skin and the specificity of tachykinin-induced tachyphylaxis of the responses. Plasma extravasation of the skin induced by tachykinins was NK-1 (SP-P)-type response from the rank order of potency of mammalian and nonmammalian tachykinins. Tachyphylaxis of the vascular response was induced by intradermal preinjection of mammalian tachykinins and was tachykinin-specific. In substance P (SP) tachyphylaxis (where SP was preinjected), the response to SP, not to neurokinin A (NKA) or neurokinin B (NKB), was decreased. In NKA tachyphylaxis and NKB tachyphylaxis, the response to NKA, not to SP or NKB, and the response to NKB, not to SP or NKA, were decreased, respectively. Thus, we conclude that the apparent NK-1-type response is mediated through three mammalian tachykinin receptors, NK-1, NK-2, and NK-3, which are specifically stimulated by their preferred agonist, SP, NKA, and NKB, respectively.  相似文献   

9.
Vasodilatation was induced by perfusion of the tachykinins substance P (SP), neurokinin A and neurokinin B and the analogues [Glp6, D-Pro9]SP-(6-11) and [Glp6, L-Pro9]SP-(6-11) over the base of vacuum-induced blisters on the rat footpad. Vasodilatation was measured as change in blood flow using a laser-Doppler flowmeter. The tachykinins induced vasodilatation in a dose-response manner with a threshold of approximately 3 pmol and pD2's of 6.48, 6.13 and 6.21 for SP, neurokinin A and neurokinin B respectively. The D- and L-Pro analogues of [Glp6, Pro9]SP-(6-11) also induced vasodilatation in a dose-dependent manner. The L-Pro analogue was more potent than the D-Pro analogue (D/L ratio of the EC50's = 21) which suggests the involvement of an NK-1 type receptor in the mediation of small vessel vasodilatation. The vasodilatation to SP was reduced by 64% and 59% in capsaicin- and antihistamine-pretreated animals respectively, demonstrating the involvement of capsaicin-sensitive primary afferent nerves and mast cells in the vasodilatation component of the neurogenic inflammatory response.  相似文献   

10.
Tachykinin production in granulomas of murine schistosomiasis mansoni   总被引:1,自引:0,他引:1  
Preprotachykinins, the products of one gene, are the precursor molecules of three mammalian tachykinins called substance P (SP), substance K (SK), and neuropeptide K. An additional mammalian tachykinin, neurokinin B, has also been described. SP and possibly other tachykinins may modulate immunologic responses. Granulomas that form around parasite ova in murine schistosomiasis were examined for tachykinins. Tachykinins were extracted from granulomas by boiling or with detergent. Extracts examined by RIA and HPLC contained only immunoreactive SP. Granulomas were dispersed with collagenase and cultured in vitro for up to 4 h. Only immunoreactive SP appeared in the culture medium. SP immunoreactivity localized solely to granuloma eosinophils as demonstrated by a sensitive immunohistochemical technique. An antiserum that recognized SK, neuropeptide K, and neurokinin B, but which possessed low reactivity to SP, also stained these cells. Only prior absorption of each antiserum with the appropriate synthetic neuropeptide would abrogate the immunostaining. This suggested that tachykinins other than SP were present within these cells. However, results of in situ hybridization experiments intimated that eosinophils produced predominantly preprotachykinin mRNAs which encode SP but are devoid of the SK/neuropeptide K sequence. It is concluded that granuloma eosinophils make predominantly SP in deference to other tachykinins, and that tachykinins other than SP are unlikely to be important in the regulation of the early granulomatous response of murine schistosomiasis.  相似文献   

11.
We studied the effects of the neutral endopeptidase (NEP) inhibitor thiorphan (1.7 mg/kg iv) and the angiotensin-converting enzyme (ACE) inhibitor captopril (5.7 mg/kg iv) on airway responses to rapid intravenous infusions of neurokinin A (NKA) and neurokinin B (NKB) in anesthetized, mechanically ventilated guinea pigs. The dose of NKA required to decrease pulmonary conductance to 50% of its base-line value (ED50GL) was fivefold less (P less than 0.0001) in animals treated with thiorphan compared with controls. NKA1-8, a product resulting from cleavage of NKA by NEP, had no bronchoconstrictor activity. Similar results were obtained by using NKB as the bronchoconstricting agent. Captopril had no significant effect on airway responses to NKA or NKB. In contrast, both thiorphan and captopril decrease the ED50GL for substance P (SP). We also compared the relative bronchoconstrictor potency of NKA, NKB, and SP. In control animals, the rank order of ED50GL values was NKA much less than NKB = SP. NKA also caused a more prolonged bronchoconstriction than SP or NKB. Thiorphan had no effect on the rank order of bronchoconstrictor potency, but in animals treated with captopril, the rank order of ED50GL values was altered to NKA less than SP less than NKB. These results suggest that degradation of NKA and NKB by NEP but not by ACE is an important determinant of the bronchoconstriction induced by these peptides. The degradation by ACE of SP but not NKA or NKB influences the observed relative potency of the three tachykinins as bronchoactive agents.  相似文献   

12.
The undecapeptide substanceP(SP) was shown to be intimately involved in both the structural and functional aspects of the anterior pituitary.Yet,in addition to its influences on hormonal secretion,SP may well possess more actions in this master gland.The present study was ftherefore aimed to investigate the effect of SP on the proliferation of rat anterior pituitary cells in primary culture,It was found that SP could dose-dependently increase the incorporation of tritiated thymidine(3H-TdR) into cultured anterior pituitary cells.Other mammalian tachykinins such as neurokinin A and neurokinin B had similar effect but to varying degrees.The equipotent analogue of SP,Norleucine^11-SP(Nle^11-SP),also acted likewise.with its action antagonizable by spantide,a SP receptor blocker.To further characterize the nature of cells responsive to the challenge of SP,immunocytochemical staining against S-100 protein and some adenohypophyseal hormones was performed alone or plus autoradiography.The results showed that the percentage of S-100 proteinimmunorective cells was apparently elevated by the addtion of Nle^11-Sp for 48h,which indicates a preferential proliferation of folliculo-stellate cells under the regime .This was confirmed by increases in immunocytochemical or autoradiographical labelling indices of anterior pituitary Substance P and anterior pituitary cell proliferation.Cells treated similarly.Taken together,These results reveal that the trophic action of SP observed previously in other tissues is also present at least in cultured rat anterior pituitary cells.with responding cells being predominantly folliculo-stellate cells as typified by S-100 proteinimmunoreactivity.Therefore,an intra-pituitary trophicaction of SP in vivo could be anticipated.  相似文献   

13.
The tachykinins (TKs) substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) have conserved C-terminal sequences and mediate similar physiological responses by activating neurokinin receptors found on neural and smooth muscle cells. Many enteric nerves express preprotachykinin A (PPT A) mRNA and synthesize SP and NKA. However, it is unclear if NKB is synthesized in enteric neurons as many antibodies developed against NKB also recognize other TKs. Therefore, the cellular distribution of NKB-like-immunoreactivity (NKB-ir) in rat ileum was examined using selective antisera raised against either synthetic Cys10-NKB or peptide 2 (P2), a non-tachykinergic peptide sequence in NKB precursor protein. NKB-ir and P2-ir had a similar distribution in varicose nerve fibers in submucosal and myenteric ganglia and almost all ganglia contained immunoreactive nerves. Few submucosal or myenteric neuronal somata contained strong immunoreactivity. Preabsorption of NKB or P2 antisera with their respective cognate peptides, but not with other TK peptides, abolished specific immunostaining. Finally, co-localization of NKB-/P2-ir with SP-ir suggested that most NKB-/P2-ir nerve fibers contain SP-ir, but some SP-ir nerves do not contain detectable NKB-/P2-ir. These results indicate that PPT B products P2 and NKB are localized in a subpopulation of enteric nerves containing TKs encoded by PPT A. Stimulation of these nerves may release NKB to activate local neurokinin receptors.  相似文献   

14.
Among the mammalian tachykinins, substance P (SP) has been shown to be the most potent at modulating the response due to nicotinic acetylcholine receptor stimulation of bovine adrenal chromaffin cells. SP-like immunoreactivity has been detected in nerve terminals innervating the adrenal medulla; however, little is known of the presence of other tachykinins in this tissue. In this study, reverse-phase HPLC was used to fractionate peptides in bovine adrenal medullary extracts, and the fractions were analyzed by radioimmunoassay using antisera to SP or neurokinin A (NKA). The results show that both NKA- and SP-like immunoreactivities are present in the adrenal medulla. The presence of neurokinin B is also indicated. The presence of multiple tachykinins in this tissue raises questions as to their functions in the adrenal medulla.  相似文献   

15.
16.
Abstract

Substance P and the two other mammalian tachykinins, neurokinin A and B, are accepted to have direct regulating effects at the anterior pituitary level. We have examined the effects of substance P (SP) and neurokinin B (NKB), alone and in combination, on prolactin release from cultured anterior pituitary cells grown on collagen-coated micro beads and placed in a perfusion system. Prolactin (Prl) secretion was observed within 25 s after exposure to either secretagogue and reached a maximum within 60-80 s. Furthermore, the prolactin response induced by SP and NKB was dose-dependent. Prl secretion remained constant for up to 4 h when SP or NKB were perifused and then fell gradually towards basal levels. Simultaneous addition of submaximal concentrations of SP and NKB resulted in an additive response compared with the responses of either secretagogue alone. Continuous (8 h) perifusion with SP did not prevent a normal prolactin response by NKB or TRH. These results indicate that the tachykinins, substance P and neurokinin B, release Prl from perifused female rat anterior pituitary cells by interaction with two different receptors, possibly the NK1 and NK3 tachykinin receptor subtypes.  相似文献   

17.
Tucci P  Bolle P  Severini C  Valeri P 《Peptides》2003,24(4):543-551
In this study, we examined the activity of the tachykinins (TKs) on lamb and sheep isolated gallbladder and whether the TKs are involved in the capsaicin-induced activity in these tissues. Substance P (SP) and physalaemin (PHYS) contracted lamb gallbladder, PHYS-induced striking tachyphylaxis. This tissue was nearly insensitive to neurokinin A (NKA), neurokinin B (NKB), septide, and capsaicin. As in lamb tissues, SP and PHYS both contracted sheep gallbladder although PHYS induced no tachyphylaxis. At doses that had no effect on lamb tissue, NKA, NKB, septide, and capsaicin contracted sheep gallbladder. Our findings indicate that TK receptors differ in adult and young ovine gallbladder. The activity of PHYS on lamb gallbladder could depend on the existence of an unusual binding site, carrying one or more residues critical for the N-terminal sequence present in PHYS but not in SP.  相似文献   

18.
Binding studies have shown that [125I]NKA is a selective ligand of tachykinin septide-sensitive binding sites from membranes of the rat submaxillary gland. Indeed, this ligand bound with high affinity to a single population of sites. In addition, competition studies indicated that natural tachykinins and tachykinin-related compounds had a similar affinity for these sites than for those labeled with [3H]ALIE-124, a selective ligand of septide-sensitive binding sites. Moreover, selective tachykinin NK2, or NK3 agonists or antagonists exhibited weak or no affinity for [125I]NKA binding sites. As indicated by Ki values of several compounds, the pharmacological characteristics of the septide-sensitive binding sites (labeled with [125I]NKA) largely differ from those of classic NK1 binding sites, as determined on crude synaptosomes from the rat brain using [125I]Bolton-Hunter substance P (SP) as ligand. Indeed, several tachykinins including neurokinin A (NKA), neuropeptide K (NPK), neuropeptide gamma (NKgamma), and neurokinin B, as well as some SP and NKA analogues or C-terminal fragments such as septide, ALIE-124, SP(6-11), NKA(4-10), which have a weak affinity for classic tachykinin NK1 binding sites exhibited a high affinity for the septide-sensitive binding sites. In contrast, SP, classic selective NK1 agonists, and antagonists had a high affinity for both types of binding sites. The presence of a large population of tachykinin septide-sensitive binding sites in the rat submaxillary gland may thus explain why NPK and NPgamma induce salivary secretion and may potentiate the SP-evoked response in spite of the absence of tachykinin NK2 receptors in this tissue.  相似文献   

19.
Neuropeptides modulate human eosinophil chemotaxis.   总被引:5,自引:0,他引:5  
To investigate the role of neuropeptides in allergic inflammation, we examined the effect of peptides on eosinophil chemotaxis. Eosinophils were purified from the blood of allergic and normal subjects using a discontinuous Percoll density gradients. Chemotaxis was induced by platelet-activating factor (PAF) and leukotriene B4, and was assayed by a modified Boyden's chamber technique. Four neuropeptides were examined in this study: substance P (SP), neurokinin A, calcitonin gene-related peptide (CGRP), and cholecystokinin octapeptide. Peptides alone (10 nM to 10 microM) were not chemotactic for eosinophils. However, when eosinophils were pre-treated with peptides (100 nM) at 37 degrees C for 30 min, chemotactic response to PAF (10 nM) was significantly enhanced (p < 0.01) in allergic subjects; % control by SP, neurokinin A, CGRP and cholecystokinin octapeptide was 269 +/- 42, 243 +/- 32, 227 +/- 21, and 251 +/- 42, respectively (n = 8). Similar results were obtained in leukotriene B4-induced eosinophil chemotaxis. In contrast, no enhancement was observed in normal subjects. Potentiating effect of SP and CGRP on PAF-induced eosinophil chemotaxis in allergic subjects was significantly attenuated by SP antagonist [D-Pro2,D-Trp7,9]-SP and human CGRP (8-37) receptor antagonist, respectively. Neutral endopeptidase inhibitors (phosphoramidon, leupeptin, and bestatin) failed to significantly augment the PAF-induced eosinophil chemotaxis when the cells were pretreated with various peptides and neutral endopeptidase inhibitors. The C-terminal fragment of SP (SP6-11) had an effect similar to that of the intact SP molecule, whereas no potentiating effect by the N-terminal of SP (SP1-9) was observed. These results suggest that neuropeptides may play a significant role in eosinophil infiltration by priming cells in allergic inflammation.  相似文献   

20.
Recently, the cloning of a novel preprotachykinin gene (PPT-C) has been reported. This gene codes for a novel peptide named hemokinin 1 (HK-1). In contrast with the known tachykinins, which are exclusively expressed in neuronal tissues, PPT-C mRNA was detected primarily in hematopoietic cells. In this study, we pharmacologically characterised the effects of HK-1 using three tachykinin monoreceptor systems, namely the rabbit jugular vein (rbJV) for NK(1), the rabbit pulmonary artery (rbPA) for NK(2), and rat portal vein (rPV) for NK(3) receptors. In all these preparations substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) elicited concentration dependent contractions showing similar maximal effects and the following rank order of potency: SP > NKA = NKB in the rbJV, NKA > NKB > SP in the rbPA, and NKB > NKA > SP in the rPV. In those vessels HK-1 behaved as a full agonist displaying potencies similar (rbPA and rPV) or slightly higher (rbJV) than those of SP. In the rbJV, SR 140333, a selective NK(1) receptor antagonist, antagonised the effects of HK-1 and SP with similar high potencies (pK(B) 9.3 and 9.5, respectively). Similar results were obtained with the pseudopeptide NK(1) antagonist, MEN 11467 (pK(B) 8.8 and 8.6, respectively). Taken together, these data indicate that HK-1 behaves as a NK(1) preferring receptor agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号