首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract– The concentration ol niacinamide in plasma and CSF was 0.5 and 0.7 μm respectively. The, mechanisms by which niacin and niacinamide, which are not synthesized in brain, enter brain, CSF and choroid plexus were investigated by injecting [14C]niacin or [14C]niacinamide intravenously and intraventricularly. [14C]Niacin or [14C]niacinamide, with or without unlabeled niacin or niacinamide, were infused intravenously at a constant rate into conscious rabbits. At 3 h, [14C]niacinamide, but not [14C]niacin, readily entered CSF, choroid plexus and brain. The addition of 4.1 mmol/kg niacinamide to the infusate markedly depressed the relative entry of [14C]niacinamide into choroid plexus and brain but not into CSF. After intraventricular injection, [14C]niacin was rapidly cleared from CSF and readily entered brain and choroid plexus. The addition of unlabeled niacin to the intraventricular injectate decreased the clearance of [14C]niacin from CSF and the entry of [14C]niacin into choroid plexus and brain. Unlike niacin, carrier niacinamide (82 μmol) in the injectate did not depress the extremely rapid clearance of intraventricularly injected [14C]niacinamide from CSF but did decrease the entry of [14C]niacinamide into brain. These results show that the control of entry and exit of niacinamide and niacin is the mechanism, at least in part, by which total niacin and NAD levels in brain cells are regulated. In the case of niacinamide which readily passes between CSF and plasma, the regulation of entry of niacinamide into brain cells by a high affinity accumulation system is an integral part of the homeostatic system. In the case of niacin, penetration into CSF and the extracellular space of brain from plasma as well as regulation of entry into brain cells by a saturable accumulation system are two distinct parts of the homeostatic system. In vivo, niacin that enters the central nervous system is converted to the principal plasma vitamer, niacinamide, in its free or bound forms such as NAD.  相似文献   

2.
The transport into and release of14C-labeled niacin and niacinamide from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated 14C by specific, energy-dependent mechanisms when [14C]niacinamide was added to the incubation medium. The saturable accumulation velocities, which were linear for 30 min, depended, in part, on incorporation of the [14C]niacinamide into NAD. The XT and Ymax for 14C accumulation with [14C]niacinamide in the medium by brain slices and choroid plexus were 0.80 μM and 1.45 μmolkg?1 (30 min)?1, and 0.23 μM and 18.6 μmol kg?1 (30 min)?1 respectively. In vitro, the choroid plexus, unlike brain slices, vigorously concentrated 14C by a separate, specific energy-dependent process when 14C niacin was added to the incubation medium. The saturable accumulation velocity, which was linear for 30 min, depended completely on the metabolism of [14C]niacin. The KT and Ymax for14C accumulation by choroid plexus with [14C]niacin in the medium were 18.1 μM and 439 μmol kg?1 (30 min)?1 respectively. Whether preincubated in [14C]niacin or [14C]niacinamide, choroid plexus released predominantly [14C]niacinamide.  相似文献   

3.
The unidirectional influx of niacinamide across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique employing [14C]niacinamide. Niacinamide was transported rapidly across the blood-brain barrier by a system that was not saturable with 10 mM niacinamide in the perfusate. However, with periods of perfusion longer than 30 seconds, there was substantial backflow of [14C]niacinamide into the perfusate. Niacinamide (1.7 M) transport through the blood-brain barrier was not significantly inhibited by 3-acetylpyridine. Thus, niacinamide is transported rapidly and bidirectionally through the blood-brain barrier by a high capacity transport system. Although involved in the transfer of niacinamide between blood and brain, this transport system does not play an important regulatory role in the synthesis of NMN, NAD, and NADP from niacinamide in brain.  相似文献   

4.
Riboflavin Homeostasis in the Central Nervous System   总被引:4,自引:2,他引:2  
Abstract: The mechanisms by which riboflavin, which is not synthesized in mammals, enters and leaves brain, CSF, and choroid plexus were investigated by injecting [14C]riboflavin intravenously or intraventricularly. Tracer amounts of [14C]riboflavin with or without FMN were infused intravenously at a constant rate into normal, starved, or probenecid-pretreated rabbits. At 3 h, [14C]riboflavin readily entered choroid plexus and brain, and, to a much lesser extent, CSF. Over 85% of the [14C]riboflavin in brain and choroid plexus was present as [14C]FMN and [14C]FAD. The addition of 0.2 mmol/kg FMN to the infusate markedly depressed the relative entry of [14C]riboflavin into brain, choroid plexus, and, less so, CSF, whereas starvation increased the relative entry of [14C]riboflavin into brain and choroid plexus. After intraventricular injection (2 h), most of the [14C]riboflavin was extremely rapidly cleared from CSF into blood. Some of the [14C]riboflavin entered brain, where over 85% of the 14C was present as [14C]FMN plus [14C]FAD. The addition of 1.23μmol FAD (which was rapidly hydrolyzed to riboflavin) to the injectate decreased the clearance of [14C]riboflavin from CSF and the phosphorylation of [14C]riboflavin in brain. Probenecid in the injectate also decreased the clearance of [14C]riboflavin from CSF. These results show that the control of entry and exit of riboflavin is the mechanism, at least in part, by which total riboflavin levels in brain cells and CSF are regulated. Penetration of riboflavin through the blood-brain barrier, saturable efflux of riboflavin from CSF, and saturable entry of riboflavin into brain cells are three distinct parts of the homeostatic system for total riboflavin in the central nervous system.  相似文献   

5.
  • 1.1. The effects of niacin deficiency on the relative turnover rates of proteins in various tissues of Japanese quail were investigated.
  • 2.2. The level of liver NAD was not affected by niacin deficiency whereas the level of pectoral muscle NAD was markedly reduced.
  • 3.3. In all dietary treatments the liver had the highest turnover rates of proteins, heart and brain had intermediate rates, and pectoral muscle had the lowest rates.
  • 4.4. Relative turnover rates of proteins in all tissues (particularly pectoral muscle) of the niacin deficient group were significantly higher than those of pair-fed control group, although there were no significant differences in turnover rate between pair-fed control and control groups.
  • 5.5. The high turnover rate of proteins in niacin deficiency was primarily attributed to enhanced degradation rate of proteins rather than enhanced synthesis rate of proteins.
  • 6.6. Optical density scanning (or densitometric) of water-soluble pectoral muscle proteins separated by isoelectric focusing revealed several additional minor protein bands between major protein bands in the niacin deficient group which were more pronounced in the acidic region of the gel.
  • 7.7. These results suggest that proteins with a low pI value in pectoral muscle of the niacin deficient animal are highly sensitive to protein degradation.
  相似文献   

6.
Abstract— Entry of [3-14C] α-aminoisobutyric acid (AIB) and [1-14C] 1-aminocyclopentanecarboxylic acid (cycloleucine) into the brain and other organs of the infant guinea pig has been investigated in vivo. The entry of [14C]AIB into brain was markedly restricted in comparison to its entry into other organs. The mean distribution ratio (14C in tissue water/14C in plasma water) achieved in brain at 45 min after administration of a pulse of [14C]AIB was 0.3. All other organs studied concentrated [14C]AIB from the blood stream, with the greatest uptake occurring in liver and kidney, in which distribution ratios reached values of 5–10. In contrast to AIB, [14C]cycloleucine entered the brain at a rate approximately the same as that into other organs. Distribution ratios for [14C]cycloleucine ranged between 0.5 and 2.0 for all organs. During the first few days of postnatal life, there was a sharp increase of concentrative uptake of [14C]AIB into liver and kidney. The entry of [14C]AIB into brain remained unchanged during this period. There was a small (35 percent) decrease in the rate of entry of [14C]cycloleucine into brain during the first 3 days of postnatal life. Since [14C]AIB is known to be concentrated from the surrounding medium by brain slices in vitro, we concluded that the locus of restriction of the entry of [14C]AIB into the brain in vivo is at the blood-brain barrier. We hypothesize that this property of the barrier is important in preventing concentrative uptake of pharmacologically active and potentially harmful amino acids by brain tissue.  相似文献   

7.
Metabolism ofl-[U-14C]lysine was studied in the human autopsy tissues and the intact monkeys through intracerebroventricular and intravenous injections. The human tissues were more active in the metabolism ofl-[14C]lysine to [14C]pipecolate than the rat tissues previously reported. This metabolism was equally active in the phosphate (pH 7) and the glycyl-glycine (pH 8.6) buffers with the brain and the kidney having higher activity than the liver. Besides [14C]pipecolate, traces of [14C]saccharopine and -[14C]aminoadipate were also detected in the liver incubation. Twenty-four hr after intraventricular injection ofl-[14C]lysine to the monkey, substantial labeling of pipecolate and -aminoadipate was observed in the brain and spinal cord, with the kidney, liver and the plasma having much reduced levels. Radioactivity levels of these two compounds were found low in the organs and plasma of the intravenously injected monkey. The urine of both monkeys contained only traces of [14C]pipecolate, even though it contained high levels ofl-[14C]lysine and -[14C]aminoadipate. It was concluded thatl-lysine is actively metabolized to pipecolate and -aminoadipate in the human and the monkey, that this reaction is most active in the brain whenl-lysine is intraventricularly administered, and that in contrast to the rat, the monkey may have an effective renal reabsorption for pipecolate which is similar to the human.  相似文献   

8.
The mechanisms by which biotin enters and leaves brain, choroid plexus and cerebrospinal fluid (CSF) were investigated by injecting [3H]biotin either intravenously or intraventricularly into adult rabbits. [3H]biotin, either alone or together with unlabeled biotin was infused at a constant rate into conscious rabbits. At 180 minutes, [3H]biotin had entered CSF, choroid plexus, and brain. In brain, CSF, and plasma, greater than 90% of the nonvolatile3H was associated with [3H]biotin. The addition of 400 mol/kg unlabeled biotin to the infusion syringe decreased the penetration of [3H]biotin into brain and CSF by approximately 70 percent. Two hours after an intraventricular injection, [3H]biotin was cleared from the CSF more rapidly than mannitol and minimal metabolism of the [3H]biotin had occurred in brain. However, 18 hours after an intraventricular injection, approximately 35% of the [3H]biotin remaining in brain had been covalently incorporated into proteins, presumably into carboxylase apoenzymes. These results show that biotin enters CSF and brain by saturable transport systems that do not depend on metabolism of the biotin. However, [3H]biotin is very slowly incorporated covalently into proteins in brain in vivo.  相似文献   

9.
To obtain evidence of the site of conversion of [U-14C]glucose into glutamate and related amino acids of the brain, a mixture of [U-14C]glucose and [3H]glutamate was injected subcutaneously into rats. [3H]Glutamate gave rise to several 3H-labelled amino acids in rat liver and blood; only 3H-labelled glutamate, glutamine or γ-aminobutyrate were found in the brain. The specific radioactivity of [3H]glutamine in the brain was higher than that of [3H]glutamate indicating the entry of [3H]glutamate mainly in the ‘small glutamate compartment’. The 14C-labelling pattern of amino acids in the brain and liver after injection of [U-14C]glucose was similar to that previously reported (Gaitonde et al., 1965). The specific radioactivity of [14C]glutamine in the blood and liver after injection of both precursors was greater than that of glutamate between 10 and 60 min after the injection of the precursors. The extent of labelling of alanine and aspartate was greater than that of other amino acids in the blood after injection of [U-14C]glucose. There was no labelling of brain protein with [3H]glutamate during the 10 min period, but significant label was found at 30 and 60 min. The highest relative incorporation of [14C]glutamate and [14C]aspartate in rat brain protein was observed at 5 min after the injection of [U-14C]glucose. The results have been discussed in the context of transport of glutamine synthesized in the brain and the site of metabolism of [U-14C]glucose in the brain.  相似文献   

10.
Leucine and -ketoisocaproate (-KIC) were perfused at increasing concentrations into rat brain hippocampus by microdialysis to mimic the conditions of maple syrup urine disease. The effects of elevated leucine or -KIC on the oxidation of L-[U-14C]glutamate and L-[U-14C]glutamine in the brain were determined in the non-anesthetized rat. 14CO2 generated by the metabolic oxidation of [l4C]glutamate and [14C]glutamine in brain was measured following its diffusion into the eluant during the microdialysis. Leucine and -KIC exhibited differential effects on 14CO2 generation from radioactive glutamate or glutamine. Infusion of 0.5 mM -KIC increased [l4C]glutamate oxidation approximately 2-fold; higher concentrations of -KIC did not further stimulate [14C]glutamate oxidation. The enhanced oxidation of [14C]glutamate may be attributed to the function of -KIC as a nitrogen acceptor from [14C]glutamate yielding [14C]-ketoglutarate, an intermediate of the tricarboxylic acid cycle. [14C-]glutamine oxidation was not stimulated as much as [14C-]glutamate oxidation and only increased at 10 mM -KIC reflecting the extra metabolic step required for its oxidative metabolism. In contrast, leucine had no effect on the oxidation of either [14C]glutamate or [14C]glutamine. In maple syrup urine disease elevated -KIC may play a significant role in altered energy metabolism in brain while leucine may contribute to clinical manifestations of this disease in other ways.  相似文献   

11.
Sendai virosomes were characrerized with respect to their ability to bind to, fuse with, and introduce substances into several rat brain preparations. Encapsulation efficiency for Sendai virosomes was enhanced but binding to cerebral cortical P2 preparations was attenuated by addition of bovine brain phosphatidylcholine during reconstitution. A higher percentage of Sendai virosomes than phosphatidylcholine liposomes appeared to bind to, fuse with and subsequently deliver [14C]sucrose into osmotically labile pools of the P2 preparation. Fusogenic activity was estimated by measuring dequenching of fluorescently labelled N-NBD-phosphatidylethanolamine. More virosomally encapsulated [14C]sucrose was bound to the P2 fraction than introduced into osmotically labile organelles, and the fraction of vesicles undergoing fusion was intermediate between these two values. Non-encapsulated [14C]sucrose did not bind to and was not taken up by the P2 fraction in a quantifiable manner. Virosomal envelopes also bound to primary cultures of rat brain neurons and glia in an apparently saturable manner. Addition of increasing amounts of the adenoassociated virus-derived vector pJDT95 increased encapsulation efficiency, and virosomes reconstituted in the presence of 60 g DNA retained most of their binding activity (5.4% of total label) compared to those containing [14C]sucrose alone (8.4%). These data indicate that Sendai virosomes may be useful in the delivery of substances into brain-derived tissues, potentially for the modulation of gene expression and neurotransmission.  相似文献   

12.
Albino rabbits of either sex were anesthetized, and a cannula was implanted permanently into the lateral ventricle. About 1 week later, the distribution of [14C]mescaline and its deaminated metabolite, [14C]trimethoxyphenylacetic acid ([14C]TMPA) in 12 brain regions was examined at 15, 60, and 180 min after the intraventricular injection of [14C]mescaline (0.5 mol in 0.05 ml saline).14C-radioactivity was rapidly distributed in all regions, reaching peak levels within 15 min. The spinal cord, superior colliculus, pons, hypothalamus, caudate, medulla oblongata, and inferior colliculus contained 23–57 nmol/g of mescaline; the thalamus, tegmentum, and cerebellum, 12–15 nmol/g; and the cerebrum and hippocampus, less than 10 nmol/g; the levels of [14C]TMPA ranged from 0.5 to 5 nmol/g. The levels of [14C]mescaline and of [14]TMPA in all brain areas were considerably decreased 180 min after its injection. Pretreatment with chlorpromazine (15 mg/kg, i.p., 30 min) lowered [14C]mescaline concentrations in the hippocampus, caudate, thalamus, and cerebrum and elevated them in the spinal cord, medulla oblongata, pons, and tegmentum; [14C]TMPA levels as the percentage of total radioactivity were not affected. Pretreatment with iproniazid (150 mg/kg, i.p., 18 h), on the other hand, uniformly reduced the TMPA levels in all brain areas, with the resultant increases in mescaline levels. The CPZ-effect in lowering the mescaline concentrations in the areas belonging to the limbic system may have significance in explaining its antihallucinogenic effect in humans and its ability to block the altered behavior induced by the latter drug in laboratory animals.  相似文献   

13.
Treatment of rats with 6-aminonicotinamide showed a small but significant decrease in the labeling of amino acids in the brain after injection of [3H]acetate. The results of these experiments also gave evidence of the presence of [3H]glucose and [3H]lactate, and an increase in [3H]glucose content in the brain of 6-aminonicotinamide treated rats. To apportion the contribution of [3H]glucose formed by gluconeogenesis from [3H]acetate to the labeling of amino acids a method was formulated based on the measurement of radioactivity of amino acids, lactate and free sugars in brain after injection of [6-3H]glucose or [1-3H]glucose relative to that after co-injection of [U-14C]glucose or [2-14C]glucose. In contrast to the expected formation of [1, 6-3H]glucose by gluconeogenesis from [3H]acetate,3H-labeled glucose isolated from brain, blood and liver showed the presence of [6-3H]glucose only. The values corrected for the presence of [6-3H]glucose showed that treatment with 6-aminonicotinamide had no effect on the labeling of amino acids by oxidation of [3H]acetate. These findings indicated that a significant decrease in the labeling of amino acids from [U-14C]glucose reported previously and again confirmed using [1-3H], [6-3H], [2-14C] or [U-14C]glucose in the present investigation was not due to the inhibition of the activities of enzymes of the citric acid cycle. These results support the postulated role of the hexosemonophosphate shunt for the utilization of glucose in providing neurotransmitter amino acids glutamate and -aminobutyrate.Dedicated to Professor K. A. C. Elliott on his 80th birthday.  相似文献   

14.
Restricted permeability of rat liver for glutamate and succinate   总被引:13,自引:13,他引:0  
1. When rat liver slices were incubated aerobically with [U-14C]glutamate the concentration of 14C within the slices remained lower (about 50%) than in the medium. The maximal concentration of 14C in the liver was reached within minutes. In rat kidney-cortex slices by contrast, 14C reached concentrations more than six times those of the medium. 2. In both liver and kidney 14C appeared in the respiratory CO2, indicating penetration of glutamate carbon into the mitochondria. In kidney slices the rate of glutamate oxidation per unit weight was about five times that in liver slices. 3. Taking into account the conversion of glutamate into glucose that occurs in the kidney but not in the liver, the flux rates of glutamate through the kidney were calculated to be about 15 times those through the liver when the external glutamate concentration was 5mm. 4. Anaerobically the glutamate concentrations in medium and tissue rapidly became equal in both liver and kidney. Thus the maintenance of concentration gradients depended on the expenditure of energy. 5. [U-14C]Succinate behaved similarly to glutamate. [U-14C]Serine was taken up more rapidly by the kidney than by the liver slices, but the concentrations reached in the liver did not remain below those of the medium. [14C]Urea was distributed evenly between medium and tissue water. 6. Incubation of liver slices with [3H]inulin indicated an extracellular space of liver slices of 26%. 7. When glutamate was generated within liver slices or the perfused liver on addition of oxaloacetate, pyruvate and a source of nitrogen, the concentration of glutamate in the tissue after 1hr. was 70–97 times that in the medium. Thus the exit of glutamate from the liver cell, like its entry, is restricted. This is borne out by measurements of the specific activity of extra- and intra-cellular glutamate on addition of [U-14C]glutamate medium. 8. Liver homogenates removed added glutamate and dicarboxylic acids 20–30 times as fast as did the perfused liver. 9. It is concluded that a major permeability barrier restricts the entry and exit through the outer liver cell membrane.  相似文献   

15.
The production of 14CO2 from l-[1-14C]fucose and d-[1-14C]arabinose has been studied in five mammalian species.Cats, guinea pigs, mice, and rabbits respired about 22% of the label of l[1-14C]fucose or of d-[1-14C]arabinose within 6 h after intraperitoneal injection of the sugar. Rats respired only 1.5% of the l-fucose label and 5% of the d-arabinose label in the same time period.Liver homogenates from cat, guinea pig, and rabbit produced significantly more 14CO2 from l-[1-14C]fucose or d-[1-14C]arabinose than mouse or rat liver homogenates. Unlike those of the other species, guinea pig liver homogenates had very low l-fucose dehydrogenase activity.The results suggest that substantial catabolism of l-fucose and d-arabinose occurs in the tissues of some animal species. Investigators wishing to employ l-fucose as a tracer of glycoprotein metabolism must, therefore, ensure that the species that they employ does not metabolize l-fucose to products interfering with their studies.  相似文献   

16.
Respiration studies in vitro, in which tissue slices were incubated with [1-14C]glucose or [6-14C]glucose and 14CO2 collected, resulted in C-1/C-6 14CO2 ratios that were higher in slices of tumor and newborn brain than in slices of adult brain. In adult brain, the C-1/C-6 14CO2 ratio averaged close to unity. In slices of tumor and newborn brain however, the mean C-1/C-6 ratio was greater than three. Addition of phenazine methosulfate (PMS) increased conversion of [1-14C]glucose to 14CO2 in slices of normal adult brain 5-fold, and in slices of newborn brain and tumor, approx 12-fold. Injection of animals with 6-aminonicotinamide (6-AN) decreased conversion of [1-14C]glucose in slices of normal brain 30% but decreased conversion in tumor slices by 80%. Evidence supports the presence of an active hexose monophosphate pathway (HMP) in tumors of the nervous system regulated in part by available NADP+ levels. Inhibition by 6-AN was more effective in tumors than in normal adult brain.  相似文献   

17.
The uptake of different labeled precursors, their incorporation into lipids, and transport along the rabbit optic pathway [ipsilateral retina and optic nerve (ON), and contralateral optic tract (OT), lateral geniculate body (LGB), and superior colliculus (SC)] were investigated. Albino rabbits were used. The following radioactive precursors, either combined or separately, dissolved in 50 l of saline containing 15% BSA, were injected into vitreous body: [2-3H]glycerol (50 Ci), [1-14C]palmitate (15 Ci), and [1-14C]linoleate (7.5 Ci). Animals were killed at different time intervals from 1 hr up to 24 days. The radioactivity of total lipids and of different phospholipid classes from total tissue was measured. One hour after the administration of precursors, the radioactivity into the retina was high and the incorporation of [3H]glycerol and [14C]palmitate increased until 12 hr and 24 hr, respectively. The incorporation of [14C]linoleate reached a maximum on the second day. The phospholipids of LGB and SC were intensively labeled after 4–8 hr, and their radioactivity increased up to the 10th day after injection, independent of the precursor employed. The results obtained indicate that the labeled hydrophilic and hydrophobic precursors used were actively incorporated into the retina. The phospholipids were later transported at a rapid rate along the optic pathway.A preliminary report of this study has been presented at the Satellite ISN Meeting, Istanbul, September 8–10, 1979.  相似文献   

18.
19.
Abstract Radioactive acetyl groups and lipids are produced from dl -[5-14C]glutamate. Degradation studies indicate that approximately 90 per cent of the radioactivity is localized in the original carboxyl groups of the two carbon unit. Since these results are shown not to be due to a 14CO2 fixation, it is concluded that the oxoglutarate shunt as an acetyl group transport system is functional in brain. The highest ratio of fatty’acid activity/CO2 activity in this pathway is found in the newborn rat brain and steadily decreases with development. This pattern is observed with incubations of brain slices with labelled glutamate or citrate and is similar to the changes observed in the activity of the citrate cleavage enzyme with brain maturation. In contrast to the previous studies with liver preparations, the conversion of [2-14C]- and [5-14C]glutamate to fatty acids is relatively small. This is particularly true during the period of maximal lipid synthesis.  相似文献   

20.
1. Lipogenesis in vivo has been studied in mice given a 250mg. meal of [U-14C]glucose (2·5μc) or given an intraperitoneal injection of 25μg. of [U-14C]glucose (2·0μc). 2. The ability to convert a [U-14C]glucose meal into fatty acid was not significantly depressed by 6–7hr. of starvation. In contrast, incorporation of 14C into fatty acid in the liver after the intraperitoneal dose of [14C]glucose was depressed by 80% and by more than 90% by 1 and 2hr. of starvation respectively. Carcass fatty acid synthesis from the [U-14C]glucose meal was not depressed by 12hr. of starvation, whereas from the tracer dose of [U-14C]glucose the depression in incorporation was 80% after 6hr. of starvation. 3. Re-feeding for 3 days, after 3 days' starvation, raised fatty acid synthesis and cholesterol synthesis in the liver fivefold and tenfold respectively above the levels in non-starved control mice. These increases were associated with an increased amount of both fatty acid and cholesterol in the liver. 4. After 18hr. of starvation incorporation of a [U-14C]glucose meal into carcass and liver glycogen were both increased threefold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号