首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N-[(1)H] NOE were measured for 80 of 91 backbone amide groups. Internal motional parameters were determined from the relaxation data using the model-free formalism while accounting for diffusion anisotropy. Rotational diffusion of the symmetric homodimer has moderate but statistically significant prolate axial anisotropy (D( parallel)/D( perpendicular) = 1.15 +/- 0.02), a global correlation time of tau(m) = 7.80 +/- 0.03 ns, and a unique axis in the plane normal to the molecular symmetry axis. Of 29 residues at the dimer interface (helices 1 and 4), only one has measurable internal motion (Q71), and the order parameters of the remaining 28 were the highest in the protein (S(2) = 0.80 to 0.91). Order parameters in the typical EF hand calcium-binding loop (S(2) = 0.73 to 0.87) were slightly lower than in the pseudo-EF hand (S(2) = 0.75 to 0.89), and effective internal correlation times, tau(e), distinct from global tumbling, were detected in the calcium-binding loops. Helix 3, which undergoes a large, calcium-induced conformational change necessary for target-protein binding, does not show evidence of interchanging between the apo and Ca(2+)-bound orientations in the absence of calcium but has rapid motion in several residues throughout the helix (S(2) = 0.78 to 0.88; 10 < or = tau(e) < or = 30 ps). The lowest order parameters were found in the C-terminal tail (S(2) = 0.62 to 0.83). Large values for chemical exchange also occur in this loop and in regions nearby in space to the highly mobile C-terminal loop, consistent with exchange broadening effects observed.  相似文献   

2.
We report the effects of peptide binding on the (15)N relaxation rates and chemical shifts of the C-SH3 of Sem-5. (15)N spin-lattice relaxation time (T(1)), spin-spin relaxation time (T(2)), and ((1)H)-(15)N NOE were obtained from heteronuclear 2D NMR experiments. These parameters were then analyzed using the Lipari-Szabo model free formalism to obtain parameters that describe the internal motions of the protein. High-order parameters (S(2) > 0.8) are found in elements of regular secondary structure, whereas some residues in the loop regions show relatively low-order parameters, notably the RT loop. Peptide binding is characterized by a significant decrease in the (15)N relaxation in the RT loop. Concomitant with the change in dynamics is a cooperative change in chemical shifts. The agreement between the binding constants calculated from chemical shift differences and that obtained from ITC indicates that the binding of Sem-5 C-SH3 to its putative peptide ligand is coupled to a cooperative conformational change in which a portion of the binding site undergoes a significant reduction in conformational heterogeneity.  相似文献   

3.
Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2 to 9.1 s(-1), indicating the presence of conformational averaging motions only for a small subset of residues.  相似文献   

4.
The backbone dynamics of ferricytochrome b(562), a four-helix bundle protein from Escherichia coli, have been studied by NMR spectroscopy. The consequences of the introduction of a c-type thioether linkage between the heme and protein and the reduction to the ferrous cytochrome have also been analyzed. (15)N relaxation rates R(1) and R(2) and (1)H-(15)N NOEs were measured at proton Larmor frequencies of 500 and 600 MHz for the oxidized and reduced protein as well as for the oxidized R98C variant. In the latter protein, an "artificial" thioether covalent bond has been introduced between the heme group and the protein frame [Arnesano, F., Banci, L., Bertini, I., Ciofi-Baffoni, S., de Lumley Woodyear, T., Johnson, C. M., and Barker, P. D. (2000) Biochemistry 39, 1499-1514]. The (15)N relaxation data were analyzed with the ModelFree protocol, and the mobility parameters on the picosecond to nanosecond time scale were compared for the three species. The three forms are rather rigid as a whole, with average generalized order parameters values of 0.87 +/- 0.08 (oxidized cytochrome b(562)), 0.84 +/- 0.07 (reduced cytochrome b(562)), and 0.85 +/- 0.07 (oxidized R98C cytochrome b(562)), indicating similar mobility for each system. Lower order parameters (S(2)) are found for residues belonging to loops 1 and 2. Higher mobility, as indicated by lower order parameters, is found for heme binding helices alpha 1 and alpha 4 in the R98C variant with respect to the wild-type protein. The analysis requires a relatively long rotational correlation time (tau(m) = 9.6 ns) whose value is accounted for on the basis of the anisotropy of the molecular shape and the high phosphate concentration needed to ensure the occurrence of monomer species. A parallel study of motions in the millisecond to microsecond time scale has also been performed on oxidized wild-type and R98C cytochrome b(562). In a CPMG experiment, decay rates were analyzed in the presence of spin-echo pulse trains of variable spacing. The dynamic behavior on this time scale is similar to that observed on the sub-nanosecond time scale, showing an increased mobility in the residues connected to the heme ligands in the R98C variant. It appears that the increased protein stability of the variant, established previously, is not correlated with an increase in rigidity.  相似文献   

5.
NMR spectroscopy was used to search for mechanistically significant differences in the local mobility of the main-chain amides of Bacillus circulans xylanase (BCX) in its native and catalytically competent covalent glycosyl-enzyme intermediate states. 15N T1, T2, and 15N[1H] NOE values were measured for approximately 120 out of 178 peptide groups in both the apo form of the protein and in BCX covalently modified at position Glu78 with a mechanism-based 2-deoxy-2-fluoro-beta-xylobioside inactivator. Employing the model-free formalism of Lipari and Szabo, the measured relaxation parameters were used to calculate a global correlation time (tau(m)) for the protein in each form (9.2 +/- 0.2 ns for apo-BCX; 9.8 +/- 0.3 ns for the modified protein), as well as individual order parameters for the main-chain NH bond vectors. Average values of the order parameters for the protein in the apo and complexed forms were S2 = 0.86 +/- 0.04 and S2 = 0.91 +/- 0.04, respectively. No correlation is observed between these order parameters and the secondary structure, solvent accessibility, or hydrogen bonding patterns of amides in either form of the protein. These results demonstrate that the backbone of BCX is well ordered in both states and that formation of the glycosyl-enzyme intermediate leads to little change, in any, in the dynamic properties of BCX on the time scales sampled by 15N-NMR relaxation measurements.  相似文献   

6.
The backbone dynamics in the native state of apocytochrome b5 were studied using 15N nuclear magnetic spin relaxation measurements. The field (11.7 and 14.1 T) and temperature (10-25 degrees C) dependence of the relaxation parameters (R1, R2, and R1rho) and the 1H-15N NOE established that the protein undergoes multiple time scale internal motions related to the secondary structure. The relaxation data were analyzed with the reduced spectral density mapping approach and within the extended model-free framework. The apoprotein was confirmed to contain a disordered heme-binding loop of approximately 30 residues with dynamics on the sub-nanosecond time scale (0.6 < S2 < 0.7, 100 ps < taue < 500 ps). This loop is attached to a structured hydrophobic core, rigid on the picosecond time scale (S2 > 0.75, taue < 50 ps). The inability to fit the data for several residues with the model-free protocol revealed the presence of correlated motion. An exchange contribution was detected in the transverse relaxation rate (R2) of all residues. The differential temperature response of R2 along the backbone supported slower exchange rates for residues in the loop (tauex > 300 micros) than for the folded polypeptide chain (tauex < 150 micros). The distribution of the reduced spectral densities at the 1H and 15N frequencies followed the dynamic trend and predicted the slowing of the internal motions at 10 degrees C. Comparison of the dynamics with those of the holoprotein [Dangi, B., Sarma, S., Yan, C., Banville, D. L., and Guiles, R. D. (1998) Biochemistry 37, 8289-8302] demonstrated that binding of the heme alters the time scale of motions both in the heme-binding loop and in the structured hydrophobic core.  相似文献   

7.
Backbone dynamics of calcium-loaded calbindin D9k have been investigated by two-dimensional proton-detected heteronuclear nuclear magnetic resonance spectroscopy, using a uniformly 15N enriched protein sample. Spin-lattice relaxation rate constants, spin-spin relaxation rate constants, and steady-state [1H]-15N nuclear Overhauser effects were determined for 71 of the 72 backbone amide 15N nuclei. The relaxation parameters were analyzed using a model-free formalism that incorporates the overall rotational correlation time of the molecule, and a generalized order parameter (S2) and an effective internal correlation time for each amide group. Calbindin D9k contains two helix-loop-helix motifs joined by a linker loop at one end of the protein and a beta-type interaction between the two calcium-binding loops at the other end. The amplitude of motions for the calcium-binding loops and the helices are similar, as judged from the average S2 values of 0.83 +/- 0.05 and 0.85 +/- 0.04, respectively. The linker region joining the two calcium-binding subdomains of the molecule has a significantly higher flexibility, as indicated by a substantially lower average S2 value of 0.59 +/- 0.23. For residues in the linker loop and at the C-terminus, the order parameter is further decomposed into separate order parameters for motional processes on two distinct time scales. The effective correlation times are significantly longer for helices I and IV than for helices II and III or for the calcium-binding loops. Residue by residue comparisons reveal correlations of the order parameters with both the crystallographic B-factors and amide proton exchange rates, despite vast differences in the time scales to which these properties are sensitive. The order parameters are also utilized to distinguish regions of the NMR-derived three-dimensional structure of calbindin D9k that are poorly defined due to inherently high flexibility, from poorly defined regions with average flexibility but a low density of structural constraints.  相似文献   

8.
15N NMR relaxation data have been used to characterize the backbone dynamics of the human acidic fibroblast growth factor (hFGF-1) in its free and sucrose octasulfate (SOS)-bound states. (15)N longitudinal (R(1)), transverse (R(2)) relaxation rates and (1H)-(15)N steady-state nuclear Overhauser effects were obtained at 500 and 600 MHz (at 25 degrees C) for all resolved backbone amide groups using (1)H- detected two-dimensional NMR experiments. Relaxation data were fit to the extended model free dynamics for each NH group. The overall correlation time (tau(m)) for the free and SOS-bound forms were estimated to be 10.4 +/- 1.07 and 11.1 +/- 1.35 ns, respectively. Titration experiments with SOS reveals that the ligand binds specifically to the C-terminal domain of the protein in a 1:1 ratio. Binding of SOS to hFGF-1 is found to induce a subtle conformational change in the protein. Significant conformational exchange (R(ex)) is observed for several residues in the free form of the protein. However, in the SOS-bound form only three residues exhibit significant R(ex) values, suggesting that the dynamics on the micro- to millisecond time scale in the free form is coupled to the cis-trans-proline isomerization. hFGF-1 is a rigid molecule with an average generalized parameter (S(2)) value of 0.89 +/- 0.03. Upon binding to SOS, there is a marked decrease in the overall flexibility (S(2) = 0.94 +/- 0.02) of the hFGF-1 molecule. However, the segment comprising residues 103-111 shows increased flexibility in the presence of SOS. Significant correlation is found between residues that show high flexibility and the putative receptor binding sites on the protein.  相似文献   

9.
Savard PY  Gagné SM 《Biochemistry》2006,45(38):11414-11424
Backbone dynamics of TEM-1 beta-lactamase (263 amino acids, 28.9 kDa) were studied by 15N nuclear magnetic resonance relaxation at 11.7, 14.1, and 18.8 T. The high quality of the spectra allowed us to measure the longitudinal relaxation rate (R1), the transverse relaxation rate (R2), and the {1H}-15N NOE for up to 227 of the 250 potentially observable backbone amide groups. The model-free formalism was used to determine internal motional parameters using an axially anisotropic model. TEM-1 exhibits a small prolate axial anisotropy (D(parallel)/D(perpendicular) = 1.23 +/- 0.01) and a global correlation time (tau(m)) of 12.41 +/- 0.01 ns. The unusually high average generalized order parameter (S2) of 0.90 +/- 0.02 indicates that TEM-1 is one of the most ordered proteins studied by liquid-state NMR to date. Although the omega-loop has a high degree of order in the picosecond-to-nanosecond time scale (mean S2 value of 0.90 +/- 0.02), we observed the presence of microsecond-to-millisecond time scale motions for this loop, as for the vicinity of the active site. These motions could be relevant for the catalytic function of TEM-1. Amide exchange experiments were also performed, and several amide groups were not exchanged after 12 days, an indication that global motions in TEM-1 are also very limited. Although detailed dynamics characterization by NMR cannot be readily applied to TEM-1 in the presence of relevant substrates, the unusual picosecond-to-nanosecond dynamics behavior of TEM-1 presented here will be essential to the validation and improvement of future molecular dynamics simulations of TEM-1 in the presence of functionally relevant substrates.  相似文献   

10.
The crystal structure of the olfactory marker protein at 2.3 A resolution   总被引:1,自引:0,他引:1  
Olfactory marker protein (OMP) is a highly expressed and phylogenetically conserved cytoplasmic protein of unknown function found almost exclusively in mature olfactory sensory neurons. Electrophysiological studies of olfactory epithelia in OMP knock-out mice show strongly retarded recovery following odorant stimulation leading to an impaired response to pulsed odor stimulation. Although these studies show that OMP is a modulator of the olfactory signal-transduction cascade, its biochemical role is not established. In order to facilitate further studies on the molecular function of OMP, its crystal structure has been determined at 2.3 A resolution using multiwavelength anomalous diffraction experiments on selenium-labeled protein. OMP is observed to form a modified beta-clamshell structure with eight antiparallel beta-strands. While OMP has no significant sequence homology to proteins of known structure, it has a similar fold to a domain found in a variety of existing structures, including in a large family of viral capsid proteins. The surface of OMP is mostly convex and lacking obvious small molecule binding sites, suggesting that it is more likely to be involved in modulating protein-protein interaction than in interacting with small molecule ligands. Three highly conserved regions have been identified as leading candidates for protein-protein interaction sites in OMP. One of these sites represents a loop known to mediate ligand interactions in the structurally homologous EphB2 receptor ligand-binding domain. This site is partially buried in the crystal structure but fully exposed in the NMR solution structure of OMP due to a change in the orientation of an alpha-helix that projects outward from the structurally invariant beta-clamshell core. Gating of this conformational change by molecular interactions in the signal-transduction cascade could be used to control access to OMP's equivalent of the EphB2 ligand-interaction loop, thereby allowing OMP to function as a molecular switch.  相似文献   

11.
The backbone dynamics of the uniformly 15N-labeled IIA domain of the glucose permease of Bacillus subtilis have been characterized using inverse-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation time constants and steady-state (1H)-15N NOEs were measured, at a spectrometer proton frequency of 500 MHz, for 137 (91%) of the 151 protonated backbone nitrogens. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameter (S2), the effective correlation time for internal motions (tau e), and 15N exchange broadening contributions (Rex) for each residue, as well as the overall molecular rotational correlation time (tau m). The T1 and T2 values for most residues were in the ranges 0.45-0.55 and 0.11-0.15 s, respectively; however, a small number of residues exhibited significantly slower relaxation. Similarly, (1H)-15N NOE values for most residues were in the range 0.72-0.80, but a few residues had much smaller positive NOEs and some exhibited negative NOEs. The molecular rotational correlation time was 6.24 +/- 0.01 ns; most residues had order parameters in the range 0.75-0.90 and tau e values of less than ca. 25 ps. Residues found to be more mobile than the average were concentrated in three areas: the N-terminal residues (1-13), which were observed to be highly disordered; the loop from P25 to D41, the apex of which is situated adjacent to the active site and may have a role in binding to other proteins; and the region from A146 to S149. All mobile residues occurred in regions close to termini, in loops, or in irregular secondary structure.  相似文献   

12.
L E Kay  D A Torchia  A Bax 《Biochemistry》1989,28(23):8972-8979
This paper describes the use of novel two-dimensional nuclear magnetic resonance (NMR) pulse sequences to provide insight into protein dynamics. The sequences developed permit the measurement of the relaxation properties of individual nuclei in macromolecules, thereby providing a powerful experimental approach to the study of local protein mobility. For isotopically labeled macromolecules, the sequences enable measurements of heteronuclear nuclear Overhauser effects (NOE) and spin-lattice (T1) and spin-spin (T2) 15N or 13C relaxation times with a sensitivity similar to those of many homonuclear 1H experiments. Because T1 values and heteronuclear NOEs are sensitive to high-frequency motions (10(8)-10(12) s-1) while T2 values are also a function of much slower processes, it is possible to explore dynamic events occurring over a large time scale. We have applied these techniques to investigate the backbone dynamics of the protein staphylococcal nuclease (S. Nase) complexed with thymidine 3',5'-bisphosphate (pdTp) and Ca2+ and labeled uniformly with 15N. T1, T2, and NOE values were obtained for over 100 assigned backbone amide nitrogens in the protein. Values of the order parameter (S), characterizing the extent of rapid 1H-15N bond motions, have been determined. These results suggest that there is no correlation between these rapid small amplitude motions and secondary structure for S. Nase. In contrast, 15N line widths suggest a possible correlation between secondary structure and motions on the millisecond time scale. In particular, the loop region between residues 42 and 56 appears to be considerably more flexible on this slow time scale than the rest of the protein.  相似文献   

13.
14.
This paper presents a procedure for detection of intermediate nanosecond internal dynamics in globular proteins. The procedure uses 1H-15N relaxation measurements at several spectrometer frequencies and hydrodynamic calculations based on experimental self-diffusion coefficients. New heteronuclear experiments, using pulse field gradients, are introduced for the measurement of translation diffusion coefficients of 15N labeled proteins. An advanced interpretation of recently published (Luginbühl et al., Biochemistry, 36, 7305-7312 (1997)) backbone amide 15N relaxation data, measured at two spectrometers (400 and 750 MHz for 1H) for N-terminal DNA-binding domain (1-63) of 434 repressor, is presented. Non-applicability of commonly used fast (picosecond) dynamics model (FD) was justified by (i) poor fit of relaxation data by the FD model-free spectral density function both for isotropic and anisotropic models of the overall molecular tumbling; (ii) specific dependence of the overall rotation correlation times calculated from T1/T2 ratio on the spectrometer frequency; (iii) mismatch of the ratio of longitudinal 15N relaxation times T1, measured at different spectrometer frequencies, in comparison with that anticipated for the FD model; (iv) significantly underestimated overall rotation correlation time provided by the FD model (5.50+/-0.15 and 5.80+/-0.15 ns for 750 and 400 MHz spectrometer frequency respectively) in comparison with correlation time obtained from hydrodynamics. On the other hand, all relaxation and hydrodynamics data are in good correspondence with the model of intermediate (nanoseconds) dynamics. Overall rotation correlation time of 7.5+/-0.7 ns was calculated from experimental translation self-diffusion rate using hydrodynamics formalism (Garcia de la Torre, J. and Bloomfield, V.A. Quart. Rev. Biophys., 14, 81-139 (1981)). The statistical analysis of 15N relaxation data along with the hydrodynamic consideration clearly revealed that most of the residues in 434(1-63) repressor are involved in the nanosecond internal dynamics characterized by the the mean order parameters of 0.59+/-0.06 and the correlation times of ca. 5 ns.  相似文献   

15.
The extent of rapid (picosecond) backbone motions within the glucocorticoid receptor DNA-binding domain (GR DBD) has been investigated using proton-detected heteronuclear NMR spectroscopy on uniformly 15N-labeled protein fragments containing the GR DBD. Sequence-specific 15N resonance assignments, based on two- and three-dimensional heteronuclear NMR spectra, are reported for 65 of 69 backbone amides within the segment C440-A509 of the rat GR in a protein fragment containing a total of 82 residues (MW = 9200). Individual backbone 15N spin-lattice relaxation times (T1), rotating-frame spin-lattice relaxation times (T1 rho), and steady-state (1H)-15N nuclear Overhauser effects (NOEs) have been measured at 11.74 T for a majority of the backbone amide nitrogens within the segment C440-N506. T1 relaxation times and NOEs are interpreted in terms of a generalized order parameter (S2) and an effective correlation time (tau e) characterizing internal motions in each backbone amide using an optimized value for the correlation time for isotropic rotational motions of the protein (tau R = 6.3 ns). Average S2 order parameters are found to be similar (approximately 0.86 +/- 0.07) for various functional domains of the DBD. Qualitative inspection as well as quantitative analysis of the relaxation and NOE data suggests that the picosecond flexibility of the DBD backbone is limited and uniform over the entire protein, with the possible exception of residues S448-H451 of the first zinc domain and a few residues for which relaxation and NOE parameters were not obtained. in particular, we find no evidence for extensive rapid backbone motions within the second zinc domain. Our results therefore suggest that the second zinc domain is not disordered in the uncomplexed state of DBD, although the possibility of slowly exchanging (ordered) conformational states cannot be excluded in the present analysis.  相似文献   

16.
RNA molecules have an inherent flexibility that enables recognition of other interacting partners through potential disorder-order transitions, yet studies to quantify such motional dynamics remain few. With an increasing database of three-dimensional structures of biologically important RNA molecules, quantifying such motions becomes important to link structural deformations with function. One such system studied intensely is domain 5 (D5) from the self-splicing group II introns, which is at the heart of its catalytic machinery. We report the dynamics of a 36 nucleotide D5 from the Pylaiella littoralis group II intron in the presence and absence of magnesium ions, and at a range of temperatures (298K-318 K). Using high-resolution NMR experiments of heteronuclear nuclear Overhauser enhancement (NOE), spin-lattice (R(1)), and spin-spin (R(2)) (13)C relaxation rates, we determined the rotational diffusion tensor of D5 using the ROTDIF program modified for RNA dynamic analysis (ROTDIF_RNA). The D5 rotational diffusion tensor has an axial symmetric ratio (D(||)/D(perpendicular)) of 1.7+/-0.3, consistent with an estimated overall rotational correlation time of tau(m)=(2D(||)+4D(perpendicular))(-1) of 6.1(+/-0.3) ns at 298 K and 4.1(+/-0.2) ns at 318 K. The measured relaxation data were analyzed with the reduced spectral density mapping formalism using assumed values of the chemical shift anisotropy of the (13)C spins. Both the relaxation data and the values of the spectral density function reveal that the functional groups in D5 implicated in magnesium ion binding and catalysis (catalytic triad, internal bulge, and tetraloop regions) exhibit thermally induced motion on a wide variety of timescales. Because these motions parallel those observed in the intramolecular stem-loop of the U6 element within the spliceosome, we hypothesize that such extensive dynamic disorder likely facilitates D5 engaging both binding and catalytic regions of the ribozyme, and these may be a conserved feature of the catalytic machinery essential for catalysis.  相似文献   

17.
A model-free analysis of Pseudomonas aeruginosa ferricytochrome c(551) dynamics based on (15)N R(1), (15)N R(2), and [(1)H]-(15)N heteronuclear nuclear Overhauser effect data is reported. The protein backbone is highly rigid (< S(2)>=0.924+/-0.005) and displays little variation in picosecond-nanosecond time scale dynamics over the structure. The loop structure containing the axial methionine ligand (loop 3) displays anomalous rigidity, which is attributed to its high proline content. Also reported are protection factors calculated from hydrogen-exchange rates. These data reveal that loop 3 residues, including the axial methionine, are protected from exchange as a result of long-range hydrogen-bonding interactions. These results are contrasted with data reported for Saccharomyces cerevisiae iso-1-ferricytochrome c, which displays higher overall flexibility (< S(2)>=0.80+/-0.07), greater variation of dynamics as a function of structure, and low protection factors for loop 3. This analysis reveals that heme proteins with similar functions and topologies may display diverse dynamical properties.  相似文献   

18.
Development of olfactory receptor neuron populations was studied using the previously described monoclonal antibody (Mab) 2B8 which binds to cell surface glycoproteins of presumptive olfactory receptor neurons. In order to definitively demonstrate that the cells recognized were olfactory receptor neurons and to better characterize these cells during development, a well-established receptor cell marker, olfactory marker protein (OMP), was studied at the same time as the 2B8 antigens in double-label immunofluorescence analyses of olfactory structures in rats from Day 13 of gestation (E13) to the early postnatal period. Olfactory epithelium cryostat sections of E13 rats showed binding of the 2B8 Mab to bipolar cells in caudal regions of the nasal cavity. The 2B8 Mab also recognized a large number of cells in the vomeronasal organ (VNO) at this stage. No specific binding of anti-OMP was seen until E15. At this time approximately half of the 2B8 reactive cells also expressed OMP. By birth, greater than 90% of the 2B8 reactive cells expressed OMP. The percentage of total fluorescent labeled cells which are double labeled remained relatively constant at 23-33% as the total number of cells increased between E15 and 2 days postnatal. 2B8 immunoreactivity can be found in the olfactory nerve layer of the olfactory bulb and the presumptive accessory olfactory bulb at E15. In double-label experiments the 2B8 Mab did not bind to all anti-OMP-labeled glomeruli of postnatal to adult rats. In summary, the 2B8 Mab recognizes cells early during development and appears to recognize a subclass of olfactory receptor cells and their axon terminals. Developmental changes in the electrophoretic profile of the olfactory 2B8 antigens were also studied. In the olfactory epithelium a single band at Mr of 200,000 was seen at E19. After birth three bands at 220,000, 180,000 and 110,000 were observed but in adults only two bands of Mr 215,000 and 163,000 were detected. During olfactory bulb development the Mr of the two major 2B8 reactive bands did not change but remained the same as the two major bands seen in the adult olfactory epithelium. The olfactory bulb band at Mr of 215,000 showed a 3 to 4-fold increase and the band at 163,000 showed a 10-fold increase in specific activity from birth to adulthood.  相似文献   

19.
Pang Y  Buck M  Zuiderweg ER 《Biochemistry》2002,41(8):2655-2666
The nano-pico second backbone dynamics of the ribonuclease binase, homologous to barnase, is investigated with (15)N, (13)C NMR relaxation at 11.74 and 18.78 T and with a 1.1 ns molecular dynamics simulation. The data are compared with the temperature factors reported for the X-ray structure of this enzyme. The molecular dynamics and X-ray data correspond well and predict motions in the loops 56-61 and 99-104 that contain residues that specifically recognize substrate and are catalytic (His101), respectively. In contrast, the (15)N relaxation data indicate that these loops are mostly ordered at the nano-pico second time scale. Nano-pico second motions in the recognition loop 56-61 are evident from (13)CO-(13)C cross relaxation data, but the mobility of the catalytic loop 99-104 is not detected by (13)CO cross relaxation either. From the results of this and previous work [Wang, L., Pang, Y., Holder, T., Brender, J. R., Kurochkin, A., and Zuiderweg, E. R. P. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 7684-7689], the following dynamical characterization of the active site area of binase emerges: a beta sheet, rigid at all probed time scales, supports the catalytic residue Glu 72. Both substrate-encapsulating loops are mobile on both fast and slow time scales, but the fast motions of the loop which contains the other catalytic residue, His 101, as predicted by B-factors and computational molecular dynamics is not detected by NMR relaxation. This work strongly argues for the use of several measures in the study of protein dynamics.  相似文献   

20.
The backbone dynamics of uniformly 15N-labeled interleukin-1 beta are investigated by using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. 15N T1, T2, and NOE data at a spectrometer frequency of 600 MHz are obtained for 90% of the backbone amide groups. The data provide evidence for motions on three time scales. All the residues exhibit very fast motions on a time scale of approximately less than 20-50 ps that can be characterized by a single-order parameter with an average value of 0.82 +/- 0.05. For a model comprising free diffusion within a cone, these residue-specific order parameters translate to an average cone semiangle of 20.7 +/- 3.3 degrees. Thirty-two residues also display motions on a time scale of 0.5-4 ns, slightly less than the overall rotational correlation time of the protein (8.3 ns). These additional motions must be invoked to account for the discrepancy between experiment and the simplest theoretical formulation in which the internal motions are described by only two parameters, a generalized order parameter and an effective correlation time [Lipari, G., & Szabo, A. (1982a) J. Am. Chem. Soc. 104, 4546-4559]. In particular, while the simple formulation can account for the 15N T1 and T2 data, it fails to account for the 15N-1H NOE data and yields calculated values for the NOEs that are either too small or negative, whereas the observed NOEs are positive. With the introduction of two internal motions that are faster than the rotational correlation time and differ in time scales by at least 1-2 orders of magnitude [Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., & Gronenborn, A. M. (1990) J. Am. Chem. Soc. 112, 4989-4991], all the relaxation data for these 32 residues can be fitted by two order parameters and an effective correlation time for the slower of the two internal motions. A simple model for these two motions is one in which the very fast motion involves axially symmetric diffusion within a cone, while the slower motion comprises jumps between two different orientations of the NH vector. For such a model the jump angle (excluding the C-terminal residue) ranges from 15 degrees to 69 degrees with a mean value of 28.6 +/- 14.0 degrees. Another 42 residues are characterized by some sort of motion on the 30-ns-10-ms time scale, which results in 15N line broadening due to chemical exchange between different conformational substates with distinct 15N chemical shifts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号