首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A lambda gt11 cDNA library containing DNA inserts prepared from human liver mRNA has been screened with an antibody to human alpha 2-thiol proteinase inhibitor that was isolated from fresh plasma. Eighteen positive clones were isolated from one million phage, and each was plaque purified. The cDNA insert of one of these phage was sequenced and shown to code for alpha 2-thiol proteinase inhibitor as identified by a partial amino acid sequence of the light chain of alpha 2-thiol proteinase inhibitor. This cDNA insert contained 1529 base pairs coding for the complete alpha 2-thiol proteinase inhibitor. It included 45 base pairs of 5' noncoding sequence, 1281 base pairs that code for pre alpha 2-thiol proteinase inhibitor, a stop codon, 160 base pairs of 3' noncoding sequence, and 40 base pairs of poly(A) tail. The noncoding sequence on the 3' end contained a potential recognition site (AATAAA) for processing and polyadenylation of precursor messenger RNA. The amino acid sequence of alpha 2-thiol proteinase inhibitor deduced from the cDNA showed a striking similarity (overall homology at 74%) to that of bovine low molecular weight (LMW) kininogen, including two internally repeated sequences and a nonapeptide sequence of bradykinin. These data clearly indicated that alpha 2-thiol proteinase inhibitor and LMW kininogen are identical. This was further supported by immunological cross-reactivity between alpha 2-thiol proteinase inhibitor and LMW kininogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Titration experiments were employed to measure the binding stoichiometry of alpha 2M for trypsin at high and low concentrations of reactants. These titration experiments were performed by measuring the SBTI-resistant trypsin activity and by direct binding measurements using 125I-labeled trypsin. The binding stoichiometry displayed a marked dependence upon protein concentration. At high alpha 2M concentrations (micromolar), 2 mol of trypsin are bound/mol of inhibitor. However, at low alpha 2M concentrations (e.g., 0.5 nM), only 1.3 mol of trypsin were bound/mol of inhibitor. Sequential additions of subsaturating amounts of trypsin to a single aliquot of alpha 2M also resulted in a reduction in the final binding ratio. A model has been formulated to account for these observations. A key element of this model is the observation that purified 1:1 alpha 2M-proteinase complexes are not capable of binding a full mole of additional proteinase [Strickland et al. (1988) Biochemistry 27, 1458-1466]. The model predicts that once the 1:1 alpha 2M-proteinase complex forms, this species undergoes a time-dependent conformational rearrangement to yield a complex with greatly reduced proteinase binding ability. According to this model, the ability of alpha 2M to bind 2 mol of proteinase depends upon the association rate of the second enzyme molecule with the binary (1:1) complex, the enzyme concentration, and the rate of the conformational alteration that occurs once the initial complex forms. Modeling experiments suggest that the magnitude of the rate constant for this conformational change is in the order of 1-2 s-1.  相似文献   

3.
Caprine alpha-2-macroglobulin (alpha2M) is a broad-spectrum, homotetrameric proteinase inhibitor that can maximally bind a single molecule of proteinase. Inhibition of proteinases by caprine alpha2M results from a series of conformational changes that are initiated by the proteinase and results in physical sequestration of the proteinase within the closed cage-like structure of conformationally altered alpha2M. In a previous study, uric acid-generated superoxide anion was identified as one of the physiologically relevant inactivators of alpha2M S.A. Khan, F.H. Khan [Free. Radic. Res. 34 (2001) 113]. We now demonstrate that hypochlorous acid (HOCl) and, to lesser extent, hydrogen peroxide (H2O2) destroy the antiproteolytic potential of caprine alpha2M. At physiologically attainable concentration, we found that HOCl significantly compromised functional integrity of the inhibitor. High concentrations of H2O2 also partially diminished proteinase inhibitory capacity of alpha2M by a mechanism not involving formation of hydroxyl radicals. For hydrogen peroxide, catalase completely protected alpha2M activity while the ability to protect the inhibitor from HOCl-induced inactivation was limited by availability of albumin. Structure function analysis demonstrated that oxidized caprine inhibitor, unlike its human counterpart, retained its tetrameric configuration as well as its characteristic ability to undergo major conformational change upon trypsinization. It is proposed that inhibition of alpha2M activity may be due to oxidation of essential residues of the inhibitor and/or structural rearrangement of the subunits.  相似文献   

4.
S M Wu  S V Pizzo 《Biochemistry》1999,38(42):13983-13990
The proteinase-proteinase inhibitor balance plays an important role in mediating inflammation-associated tissue destruction. alpha 2-Macroglobulin (alpha 2M) is a high-affinity, broad-spectrum proteinase inhibitor found abundantly in plasma and interstitial fluids. Increased levels of alpha 2M and proteinase-alpha 2M complexes can be demonstrated in patients with sepsis, emphysema, peridontitis, rheumatoid arthritis, and other inflammatory diseases. Despite these increased levels, proteolysis remains a significant problem. We hypothesized that a mechanism for inactivating alpha 2M-mediated proteinase inhibition must exist and recently demonstrated that alpha 2M isolated from human rheumatoid arthritis synovial fluid is oxidized and has decreased functional activity. The oxidant responsible for alpha 2M inactivation and the mechanism of such destruction were not studied. We now report that while hypochlorite and hydroxyl radical both modify amino acid residues on alpha 2M, only hypochlorite can abolish the ability of alpha 2M to inhibit proteinases. Hydrogen peroxide, on the other hand, has no effect on alpha 2M structure or function. Protein unfolding with increased susceptibility to proteolytic cleavage appears to be involved in alpha 2M inactivation by oxidation. The in vivo relevance of this mechanism is supported by the presence of multiple cleavage fragments of alpha 2M in synovial fluid from patients with rheumatoid arthritis, where significant tissue destruction occurs, but not in patients with osteoarthritis. These results provide strong evidence that hypochlorite oxidation contributes to enhanced tissue destruction during inflammation by inactivating alpha 2M.  相似文献   

5.
The active site titration for various proteinases relies on the development of optimal enzyme titrants for each proteinase, but these titrants are only available for a limited number of proteinases. We have described a new active site titration method applicable to various kinds of endoproteinases using small quantities of the enzymes. This method was carried out by using alpha 2-macroglobulin (alpha 2M) as a titrant and a high-performance liquid chromatography (HPLC) system. When the proteinase solution was treated with alpha 2M, the active proteinase was trapped by alpha 2M. In this reaction alpha 2M does not usually complex with inactive proteinase. After the reaction of proteinase with an excess of alpha 2M, the reaction mixture is applied to an HPLC gel column to separate the uncomplexed enzyme from the one complexed with alpha 2M. The active proteinase is complexed and eluted with alpha 2M, but the inactive proteinase is eluted at the original elution volume. The same amount of the enzyme was also applied to the column. From the decrease of the peak height at the elution position of the uncomplexed proteinase, we can estimate the ratio between enzymatically active proteinases and total proteinases. To test the usefulness of this method, we applied this method to chymotrypsin and trypsin whose activities were predetermined by conventional active site titration, and there was good agreement between both results. With this new method, we can estimate a proteinase activity with as little as 200 ng of the enzyme, a very small amount compared with those required in conventional methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A proteinase inhibitor which has strong anti-collagenase activity was found in chicken egg white. The inhibitor (pI = 4.9) was purified by poly(ethylene glycol) (5.5-10%) precipitation and chromatography on Ultrogel AcA 34, DEAE-cellulose, and Sephacryl S-300. The final product was homogeneous on 5% polyacrylamide gel electrophoresis. Stoichiometric inhibition was observed with the inhibitor and rabbit synovial collagenase and thermolysin (1:1 molar ratio with thermolysin). The inhibitor ran on sodium dodecyl sulfate-gel electrophoresis with reduction as a single protein band of Mr = 165,000. The molecular weight of the native inhibitor was estimated to be 780,000 by sedimentation equilibrium centrifugation. Centrifugation analysis in 6 M guanidine hydrochloride and of the reduced sample gave M omega = 380,000 and M omega = 195,000, respectively, where M omega is the weight-average molecular weight determined by equilibrium ultra-centrifugation. The results indicated that the inhibitor molecule is a tetramer of identical subunits linked in pairs by disulfide bonds. Since the molecular weight and the quaternary structure of the inhibitor were similar to those of alpha 2-macroglobulin (alpha 2M) in plasma, chicken alpha 2M was isolated and compared with the inhibitor. The inhibitor was not sensitive to methylamine, whereas chicken alpha 2M was. No immunocross-reactivity was observed between the inhibitor and chicken alpha 2M. The NH2-terminal sequence of the egg white inhibitor is Lys-Glu-Pro-Glu-Pro-Gln-Tyr-Val-Leu-Met-Val-Pro-Ala. The sequence of chicken alpha 2M is Ser-Thr-Val-Thr-Glu-Pro-Gln-Tyr-Met-Val-Leu-Leu-Pro-Phe. Considerable homology was found between the two sequences and to the NH2-terminal sequence of human alpha 2M. Monospecific antibody raised against the egg white inhibitor was employed to examine the tissue distribution of the inhibitor. The inhibitor was found only in oviduct and egg white, but not in other tissues or serum of chickens.  相似文献   

7.
The reactions of cis- and trans-dichlorodiammineplatinum(II) (cis- and trans-DDP) with albumin and two plasma proteinase inhibitors were compared. Reaction with alpha 2-macroglobulin (alpha 2M) resulted in subunit crosslinking and loss of proteinase binding activity. The reaction also modified a receptor recognition site present on each alpha 2M subunit. While more trans-DDP was incorporated into alpha 2M than cis-DDP, cis-DDP was more effective at blocking receptor recognition, alpha 1-proteinase inhibitor was also inactivated by reaction with either cis- or trans-DDP. These reactions resulted in binding of platinum to methionine-358 at the reactive center of this inhibitor. Trans-DDP, however, was less selective and also bound to the single cysteine residue (Cys-232) of alpha 1PI. Reaction of albumin with cis-DDP resulted in incorporation of about 1 mol platinum per mol protein, and this platinum modified the single cysteine (Cys-34) in the molecule. Albumin incorporated twice as much trans-DDP, but the binding did not involve cysteine-34. In general, reactions of cis-DDP with proteins appear to be more selective than those observed for modification with the trans isomer.  相似文献   

8.
Human alpha 2-macroglobulin (alpha 2M) is a unique 720-kDa proteinase inhibitor with a broad specificity. Unlike most other proteinase inhibitors, it does not inhibit proteolytic activity by blocking the active site of the proteinase. During complex formation with a proteinase, alpha 2M entraps the proteinase molecule in a reaction that involves large conformational changes in alpha 2M. We describe the molecular cloning of alpha 2M cDNA from the human hepatoblastoma cell line HepG2. The cDNA was subcloned under control of the adenovirus major late promoter in a mammalian expression vector and introduced into the baby hamster kidney (BHK) cell line. Transformed clones were isolated and tested for production of human alpha 2M with a specific enzyme-linked immunosorbent assay. Human recombinant alpha 2M (r alpha 2M), secreted and purified from isolated transfected BHK cell lines, was structurally and functionally compared to alpha 2M purified from human serum. The results show that r alpha 2M was secreted from the BHK cells as an active proteinase-binding tetramer with functional thiol esters. Cleavage reactions of r alpha 2M with methylamine and trypsin showed that the recombinant product, which was correctly processed at the N-terminus, exhibited molecular characteristics similar to those of the human serum derived reference. Moreover, r alpha 2M-trypsin complex bound to purified human placental alpha 2M receptor with an affinity indistinguishable from that of a complex formed from serum-derived alpha 2M and trypsin.  相似文献   

9.
Granzyme M is a trypsin-fold serine protease that is specifically found in the granules of natural killer cells. This enzyme has been implicated recently in the induction of target cell death by cytotoxic lymphocytes, but unlike granzymes A and B, the molecular mechanism of action of granzyme M is unknown. We have characterized the extended substrate specificity of human granzyme M by using purified recombinant enzyme, several positional scanning libraries of coumarin substrates, and a panel of individual p-nitroanilide and coumarin substrates. In contrast to previous studies conducted using thiobenzyl ester substrates (Smyth, M. J., O'Connor, M. D., Trapani, J. A., Kershaw, M. H., and Brinkworth, R. I. (1996) J. Immunol. 156, 4174-4181), a strong preference for leucine at P1 over methionine was demonstrated. The extended substrate specificity was determined to be lysine = norleucine at P4, broad at P3, proline > alanine at P2, and leucine > norleucine > methionine at P1. The enzyme activity was found to be highly dependent on the length and sequence of substrates, indicative of a regulatory function for human granzyme M. Finally, the interaction between granzyme M and the serpins alpha(1)-antichymotrypsin, alpha(1)-proteinase inhibitor, and proteinase inhibitor 9 was characterized by using a candidate-based approach to identify potential endogenous inhibitors. Proteinase inhibitor 9 was effectively hydrolyzed and inactivated by human granzyme M, raising the possibility that this orphan granzyme bypasses proteinase inhibitor 9 inhibition of granzyme B.  相似文献   

10.
P A Roche  M D Moncino  S V Pizzo 《Biochemistry》1989,28(19):7629-7636
Treatment of the human plasma proteinase inhibitor alpha 2-macroglobulin (alpha 2M) with proteinase results in conformational changes in the inhibitor and subsequent activation and cleavage of the internal thiolester bonds of alpha 2M. Previous studies from this laboratory have shown that cross-linking the alpha 2M subunits with cis-dichlorodiammineplatinum(II) (cis-DDP) prevents the proteinase-induced conformational changes which lead to the activation and cleavage of the internal thiolester bonds of alpha 2M. In addition, cis-DDP treatment prevents the proteinase- or CH3NH2-induced conformational changes in alpha 2M which lead to a "slow" to "fast" change in nondenaturing polyacrylamide gel electrophoresis. In this paper, we demonstrate that treatment of alpha 2M with dithiobis(succinimidyl propionate) (DSP) also results in cross-linking of the subunits of alpha 2M with concomitant loss of proteinase inhibitory activity. Although proteinase is not inhibited by DSP-treated alpha 2M, bait region specific proteolysis of the alpha 2M subunits still occurs. Unlike cis-DDP-treated alpha 2M, however, incubation of DSP-treated alpha 2M with proteinase does not prevent the bait region cleavage dependent conformational changes which lead to activation and cleavage of the internal thiolester bonds in alpha 2M. On the other hand, cross-linking of alpha 2M with DSP does prevent the conformational changes which trigger receptor recognition site exposure following cleavage of the alpha 2M thiolester bonds by CH3NH2. These conformational changes, however, occur following incubation of the CH3NH2-treated protein with proteinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Streptokinase-human plasmin complex (Sk-hPm) reacted rapidly with purified mouse alpha 2-macroglobulin (m alpha 2M) in vitro at 37 degrees C. Approx. 98% of the plasmin in Sk-hPm bound covalently to at least one m alpha 2M subunit. Most of the streptokinase dissociated (95%). The rate of Sk-hPm inactivation clearly depended on the m alpha 2M concentration. With 1.2 microM-m alpha 2M, 50% of the Sk-hPm (0.02 microM) reacted in less than 50 s. A double-reciprocal plot comparing pseudo-first-order rate constants (kapp.) and m alpha 2M concentration yielded a second-order rate constant of 2.3 x 10(4) M-1.s-1 (r = 0.97). This value is an approximation, since Sk-hPm preparations are heterogeneous. Sk-hPm reacted with human alpha 2M (h alpha 2M), forming alpha 2M-plasmin complex (98% covalent). More than 99% of the streptokinase dissociated. The rate of reaction of Sk-hPm with h alpha 2M did not clearly depend on inhibitor concentration. The kapp. values determined with 0.6-1.2 microM-h alpha 2M were decreased 10-20-fold compared with m alpha 2M. In order to study the effect of Sk-hPm heterogeneity on the reaction with alpha 2M, the proteinase was incubated for various amounts of time at 37 degrees C before addition of inhibitor. The enzyme amidase activity was maximal within 5 min; however, reaction of Sk-hPm with m alpha 2M or h alpha 2M was most extensive after 20 min and 2 h respectively. After incubation for more than 1 h, Sk-hPm acquired fibrinogenolytic activity, suggesting plasmin dissociation. Therefore the enhanced reaction of h alpha 2M with 'older' Sk-hPm preparations may have resulted in part from dissociated plasmin or 'plasmin-like' species. By contrast, the reaction of Sk-hPm with m alpha 2M was most rapid when the proteinase preparation was free of plasmin, indicating direct reaction of Sk-hPm with m alpha 2M as the only major mechanism. Finally, streptokinase-cat plasminogen complex reacted more extensively with m alpha 2M than with h alpha 2M, suggesting that m alpha 2M may be a superior inhibitor with this class of plasminogen activators in general.  相似文献   

12.
The unique steric inhibition of endopeptidases by human alpha(2)M (alpha(2)-macroglobulin) and the inactivation of the latter by methylamine were examined in relation to each other. Progressive binding of trypsin by alpha(2)M was closely correlated with the loss of the methylamine-reactive sites in alpha(2)M: for each trypsin molecule bound, two such sites were inactivated. The results further showed that, even at low proteinase/alpha(2)M ratios, no unaccounted loss of trypsin-binding capacity occurred. As alpha(2)M is bivalent for trypsin binding and no trypsin bound to electrophoretic slow-form alpha(2)M was observed, this indicates that the two sites must react (bind trypsin) in rapid succession. Reaction of [(14)C]methylamine with alpha(2)M was biphasic in time; in the initial rapid phase complex-formation with trypsin caused a largely increased incorporation of methylamine. In the subsequent slow phase trypsin had no such effect. These results prompted further studies on the kinetics of methylamine inactivation of alpha(2)M with time of methylamine treatment. It was found that conformational change of alpha(2)M and decrease in trypsin binding (activity resistant to soya-bean trypsin inhibitor) showed different kinetics. The latter decreased rapidly, following pseudo-first-order kinetics. Conformational change was much slower and followed complex kinetics. On the other hand, binding of (125)I-labelled trypsin to alpha(2)M did follow the same kinetics as the conformational change. This discrepancy between total binding ((125)I radioactivity) and trypsin-inhibitor-resistant binding of trypsin indicated formation of anomalous complexes, in which trypsin could still be inhibited by soya-bean trypsin inhibitor. Further examination confirmed that these complexes were proteolytically active towards haemoglobin and bound (125)I-labelled soya-bean trypsin inhibitor to the active site of trypsin. The inhibition by soya-bean trypsin inhibitor was slowed down as compared with reaction with free trypsin. The results are discussed in relation to the subunit structure of alpha(2)M and to the mechanism of formation of the complex.  相似文献   

13.
A hallmark of inflammation is the release of oxidants, proteinases, and cytokines, all important mediators of the inflammatory cascade. alpha(2)-Macroglobulin (alpha(2)M) is a high-affinity, broad-specificity proteinase inhibitor that also binds and regulates the biological activities of a number of cytokines. We demonstrated recently that hypochlorite-oxidized alpha(2)M has decreased ability to inhibit proteinases and regulate cytokines in vitro. The role of oxidation in regulating alpha(2)M functions in vivo is largely unknown. To determine the extent and biological consequence of in vivo alpha(2)M oxidation, we measured the degree of oxidative alpha(2)M modification from rheumatoid arthritis (RA) synovial fluid and compared this with osteoarthritis (OA) as noninflammatory controls. We found that RA synovial fluid alpha(2)M is significantly more oxidized than that from OA. RA synovial fluid also contains a twofold higher median alpha(2)M level than OA, while having only half the alpha(2)M-proteinase inhibitory activity. Detailed biochemical analysis demonstrates proteolytically degraded alpha(2)M in RA greater than in OA synovial fluid. Additionally, the hypochlorite-mediated oxidation product, chlorotyrosine, is present in RA more than in OA or plasma alpha(2)M samples. Taken together, these findings confirm a role for oxidative regulation of inflammation by altering the functions of extracellular mediators such as alpha(2)M.  相似文献   

14.
Interaction between a serine proteinase from bovine duodenum and human serum alpha(2)-macroglobulin (alpha(2)-MG) was studied. alpha(2)-MG is established to be one of the most effective duodenase inhibitors. The enzyme is completely inhibited in less than 30 sec at equimolar ratio of the inhibitor and enzyme (concentration 2 x 10(-8) M). Under identical conditions, the rate of duodenase association with alpha(2)-MG is at least 2.5-fold higher than the rate of chymotrypsin association with this inhibitor. The interaction with duodenase results in proteolysis of the inhibitor subunit in the "bait region". Similarly to other proteases, duodenase in the complex with alpha(2)-MG retains the intact catalytic apparatus and ability to hydrolyze some small substrates. But the duodenase-inhibitor complex is fully inactive to proteins (bovine serum albumin). The stoichiometry of the enzyme interaction with the inhibitor is 2 : 1 (mol/mol). Based on the association rate constant and the termination time of the duodenase and alpha(2)-MG in vivo association, alpha(2)-MG is suggested to be a physiological regulator of the enzyme.  相似文献   

15.
In recent years, many studies have suggested a direct role for alpha 2-macroglobulin (alpha 2M), a plasma proteinase inhibitor, in growth factor regulation. When coincubated in the presence of either trypsin, pancreatic elastase, human neutrophil elastase, or plasmin, 125I-insulin rapidly formed a complex with alpha 2M which was greater than 80% covalent. The covalent binding was stable to reduction but abolished by competition with beta-aminopropionitrile. Neither native alpha 2M nor alpha 2M pretreated with proteinase or methylamine incorporated 125I-insulin. Experiments utilizing alpha 2M cross-linked with cis-dichlorodiammineplatinum(II) indicated that 125I-insulin must be present during alpha 2M conformational change to covalently bind. A maximum stoichiometry of 4 mol of insulin bound per mole of alpha 2M and the short half-life of the alpha 2M intermediate capable of covalent incorporation were consistent with thiol ester involvement. Protein sequence analysis of unlabeled insulin-alpha 2M complexes, together with results of beta-aminopropionitrile competition, confirmed that insulin incorporation occurs via the same gamma-glutamyl amide linkage responsible for covalent proteinase and methylamine binding to alpha 2M. Although intact insulin apparently incorporated through its sole lysine residue on the B chain, we found that isolated A chain also bound covalently to alpha 2M. Phenyl isothiocyanate derivatization of the N-terminus had no effect on A-chain binding, supporting the possibility of heretofore unreported gamma-glutamyl ester linkages to alpha 2M.  相似文献   

16.
Characterization of thrombin binding to alpha 2-macroglobulin   总被引:1,自引:0,他引:1  
The formation and structural characteristics of the human alpha 2-macroglobulin (alpha 2M)-thrombin complex were studied by intrinsic protein fluorescence, sulfhydryl group titration, electrophoresis in denaturing and nondenaturing polyacrylamide gel systems, and in macromolecular inhibitor assays. The interaction between alpha 2M and thrombin was also assessed by comparison of sodium dodecyl sulfate-gel electrophoretic patterns of peptides produced by Staphylococcus aureus V-8 proteinase digests of denatured alpha 2M-125I-thrombin and alpha 2M-125I-trypsin complexes. In experiments measuring fluorescence changes and sulfhydryl group exposure caused by methylamine, we found that thrombin produced its maximum effects at a mole ratio of approximately 1.3:1 (thrombin:alpha 2M). Measurements of the ability of alpha 2M to bind trypsin after prior reaction with thrombin indicated that thrombin binds rapidly at one site on alpha 2M, but occupies the second site with some difficulty. Intrinsic fluorescence studies of trypsin binding to alpha 2M at pH 5.0, 6.5, and 8.0 not only revealed striking differences in trypsin's behavior over this pH range, but also some similarities between the behavior of thrombin and trypsin not heretofore recognized. Structural studies, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to measure alpha 2M-125I-thrombin covalent complex formation, indicated that covalency reached a maximum at a mole ratio of approximately 1.5:1. At this ratio, only 1 mol of thrombin is bound covalently per mol of alpha 2M. These gel studies and those of proteolytic digests of denatured alpha 2M-125I-trypsin and alpha 2M-125I-thrombin complexes suggest that proteinases form covalent bonds with uncleaved alpha 2M subunits. The sum of our results is consistent with a mechanism of proteinase binding to alpha 2M in which the affinity of the proteinase for alpha 2M during an initial reversible interaction determines its binding ratio to the inhibitor.  相似文献   

17.
Cleavage of host defense proteins from reproductive secretions was investigated as a potential virulence mechanism for Tritrichomonas foetus extracellular proteinases. Three categories of susceptibility to digestion were found among the defense proteins tested. Cleavage of fibrinogen, fibronectin, and albumin occurred rapidly with more than 50% of these digested within 30 min. Lactoferrin, immunoglobulin G1, and immunoglobulin G2 were more than 50% digested after 4 h. Transferrin, immunoglobulin M, and immunoglobulin A were the most resistant to the Tritrichomonas foetus extracellular proteinases, since 50% or more of the parent molecule remained after 24 h. The responsible proteinases were classified as cysteine (thiol) proteinases because cleavage was inhibited by the cysteine proteinase specific inhibitor, trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane and not by the serine proteinase specific inhibitor, phenylmethylsulfonyl fluoride. In addition, alpha 2-macroglobulin, but not alpha 1-antitrypsin, inhibits the action of the proteinases. The ratio of this naturally occurring inhibitor to the quantity of proteinases released may determine whether the above substrates are cleaved in vivo. Since these substrates are implicated in iron acquisition, cell adherence, and acquired immunity, Tritrichomonas foetus proteinases are likely to play a role in host-parasite interactions.  相似文献   

18.
I Bj?rk  T Lindblom  P Lindahl 《Biochemistry》1985,24(11):2653-2660
Cleavage of the thio ester bonds of human alpha2-macroglobulin (alpha 2M) by methylamine leads to an extensive conformational change and to inactivation of the inhibitor. In contrast, cleavage of these bonds in bovine alpha 2M only minimally perturbs the hydrodynamic volume of the protein [Dangott, L. J., & Cunningham, L. W. (1982) Biochem. Biophys. Res. Commun. 107, 1243-1251], as well as its spectroscopic properties, as analyzed by ultraviolet difference spectroscopy, circular dichroism, and fluorescence in this work. A conformational change analogous to that undergone by human alpha 2M thus does not occur in the bovine inhibitor. However, changes of several functional properties of bovine alpha 2M are induced by the amine. The apparent stoichiometry of inhibition of trypsin thus is reduced from about 1.2 to about 0.7 mol of enzyme/mol of inhibitor. In spite of this decrease, the interaction with the proteinase induces similar conformational changes in methylamine-treated alpha 2M as in intact alpha 2M, as revealed by spectroscopic analyses, indicating that the mode of binding of the proteinase to the inhibitor is essentially unperturbed by thio ester bond cleavage. The reaction with methylamine also greatly increases the sensitivity of bovine alpha 2M to proteolysis by trypsin at sites other than the "bait" region. Moreover, the second-order rate constant for the reaction with thrombin is reduced by about 10-fold. These results indicate that the thio ester bonds of bovine alpha 2M, although not required per se for the binding of proteinases, nevertheless are responsible for maintaining certain structural features of the inhibitor that are of importance for full activity.  相似文献   

19.
Human blood monocytes in culture differentiate to macrophagelike cells within 1 week. Coinciding with this morphological transition the cells started releasing increasing amounts of the serine proteinase plasminogen activator (PA; Mr 56,000) of the urokinase (u-PA) type and the proteinase inhibitor alpha-2-macroglobulin (alpha 2M). Unlike the cell-associated PA activity, which was also readily detected in fresh monocytes, the activity secreted into the serum-free culture medium could be measured only after treatment of the samples with sodium dodecyl sulphate. Heat or acid treatment of the medium was not sufficient to reveal the PA activity, suggesting that, apart from alpha 2M, another PA-inhibiting substance was present in the culture medium. The inhibitor (Mr 65,000) was found to be synthesized by macrophages and specifically inhibited u-PA activity but not tissue-type PA (t-PA) or plasmin activity. Dexamethasone decreased the secretion of PA by differentiated macrophages without affecting the production of alpha 2M or the PA inhibitor. Dexamethasone also inhibited the morphological differentiation of the cells when added to the monocyte-phase cells.  相似文献   

20.
We examined the proteinase inhibitor alpha2-macroglobulin (alpha2M) in plasma from patients with multiple sclerosis (MS); a neurological disease of the central nervous system. The plasma concentrations of native and transformed alpha2M were measured in 90 patients with clinically definite MS, 73 with relapsing-remitting and 17 with secondary progressive MS, and 132 healthy individuals. Significantly lower concentrations of native alpha2M and significantly higher concentrations of transformed alpha2M were found in MS patients. A significant correlation between the concentrations of native and transformed alpha2M was found. The fraction of transformed to total alpha2M in the MS patients was 36% higher than in the healthy individuals. The results suggest an important involvement of alpha2M in regulation of increased proteolytic activity occurring in MS disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号