首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catfishSynodontis nigriventris normally swims upside-down but can assume any posture in response to a substrate it swims close to. Postural reflexes of the body and the eyes, labyrinthine anatomy and passively maintained posture were investigated to obtain indications for possible mechanisms controlling the peculiar postural behavior of this fish. Saccade-like resetting movements of the eyes during counter-roll to body tilt about the longitudinal axis, and maintained tilted swimming positions in blinded fish suggest that these animals reset their vestibular CNS circuits to zero when in tilted positions.Synodontis nigriventris is thus able to maintain any posture without interference from tilt-counteracting vestibular reflexes. The normal upside-down swimming apparently results from a central bias for this position and a supporting ventral light response.We conclude that if the reafference principle applies to the phenomena investigated, the efference copy may be fed through an integrator before reaching vestibular reflex circuits.  相似文献   

2.
3.
The hatchling frog tadpole provides a simple preparation where the fundamental roles for inhibition in the central nervous networks controlling behaviour can be examined. Antibody staining reveals the distribution of at least ten different populations of glycinergic and GABAergic neurons in the CNS. Single neuron recording and marker injections have been used to study the roles and anatomy of three types of inhibitory neuron in the swimming behaviour of the tadpole. Spinal commissural interneurons control alternation of the two sides by producing glycinergic reciprocal inhibition. By interacting with the special membrane properties of excitatory interneurons they also contribute to rhythm generation through post-inhibitory rebound. Spinal ascending interneurons produce recurrent glycinergic inhibition of sensory pathways that gates reflex responses during swimming. In addition their inhibition also limits firing in CPG neurons during swimming. Midhindbrain reticulospinal neurons are excited by pressure to the head and produce powerful GABAergic inhibition that stops swimming when the tadpole swims into solid objects. They may also produce tonic inhibition while the tadpole is at rest that reduces spontaneous swimming and responsiveness of the tadpole, keeping it still so it is not noticed by predators.  相似文献   

4.
Nowadays, it has been one of the hottest topics for scientists to research the interventional micro robots operating in human lumen. In this paper, a novel sperm-like interventional swimming robot with single tail is presented. The kinematic models of the sperm-like helical swimming modes are built, and the motion principles are analyzed numerically. Positions and orientations are displayed graphically during the single-tail micro robot swims in liquid. Also, the displacements and the swimming velocities of the robot in x, y, z directions are plotted. It is shown that, when the single flexible tail screws in liquid environment, it generates both axial and radial propulsion forces, thus to cause the axial and the radial movements. In order to make the swimming micro robot more controllable, an improved sperm-like swimming intervention micro robot with four flexible tails is fabricated and characterized in pipes filled with silicone oil. Experimental results show that the sperm-like micro robot can swim efficiently. With different combinations of the tails' rotation directions, the robot can gain excellent controlled performance.  相似文献   

5.
In addition to forward undulatory swimming, Gymnarchus niloticus can swim via undulations of the dorsal fin while the body axis remains straight; furthermore, it swims forward and backward in a similar way, which indicates that the undulation of the dorsal fin can simultaneously provide bidirectional propulsive and maneuvering forces with the help of the tail fin. A high-resolution Charge-Coupled Device (CCD) imaging camera system is used to record kinematics of steady swimming as well as maneuvering in G. niloticus. Based on experimental data, this paper discusses the kinematics (cruising speed, wave speed, cycle frequency, amplitude, lateral displacement) of forward as well as backward swimming and maneuvering. During forward swimming, the propulsive force is generated mainly by undulations of the dorsal fin while the body axis remains straight. The kinematic parameters (wave speed, wavelength, cycle frequency, amplitude) have statistically significant correlations with cruising speed. In addition, the yaw at the head is minimal during steady swimming. From experimental data, the maximal lateral displacement of head is not more than 1% of the body length, while the maximal lateral displacement of the whole body is not more than 5% of the body length. Another important feature is that G. niloticus swims backwards using an undulatory mechanism that resembles the forward undulatory swimming mechanism. In backward swimming, the increase of lateral displacement of the head is comparatively significant; the amplitude profiles of the propulsive wave along the dorsal fin are significantly different from those in forward swimming. When G. niloticus does fast maneuvering, its body is first bent into either a C shape or an S shape, then it is rapidly unwound in a travelling wave fashion. It rarely maneuvers without the help of the tail fin and body bending.  相似文献   

6.
A general Boundary Element Method is presented and benchmarked with existing Slender Body Theory results and reflection solutions for the motion of spheres and slender bodies near plane boundaries. This method is used to model the swimming of a microorganism with a spherical cell body, propelled by a single rotating flagellum. The swimming of such an organism near a plane boundary, midway between two plane boundaries or in the vicinity of another similar organism, is investigated. It is found that only a small increase (less than 10%) results in the mean swimming speed of an organism swimming near and parallel to another identical organism. Similarly, only a minor propulsive advantage (again, less than 10% increase in mean swimming speed) is predicted when an organism swims very close and parallel to plane boundaries (such as a microscopic plate and (or) a coverslip, for example). This is explained in terms of the flagellar propulsive advantage derived from an increase in the ratio of the normal to tangential resistance coefficients of a slender body being offset by the apparently equally significant increase in the cell body drag. For an organism swimming normal to and toward a plane boundary, however, it is predicted that (assuming it is rotating its flagellum, relative to its cell body, with a constant angular frequency) the resulting swimming speed decreases asymptotically as the organism approaches the boundary.  相似文献   

7.
To investigate the effect of cold water on swimming four men who declared themselves good swimmers were immersed fully clothed on separate days in water at 23·7° and 4·7° C. The time that they were able to swim in the cold water was much shorter than in the warm. The two shortest swims ended after 1·5 and 7·6 minutes, before rectal temperature fell, when the men suddenly floundered after developing respiratory distress with breathing rates of 56–60/min. The other cold swims, by the two fattest men, ended less abruptly with signs of general and peripheral hypothermia.It is concluded that swimming in cold water was stopped partly by respiratory reflexes in the thin men and hypothermia in the fat, and partly by the cold water''s high viscosity. The longer swimming times of the fat men are attributed largely to their greater buoyancy enabling them to keep their heads above water during the early hyperventilation.The findings explain some reports of sudden death in cold water. It is clearly highly dangerous to attempt to swim short distances to shore without a life-jacket in water near 0° C.  相似文献   

8.
ABSTRACT: Lomax, M, Iggleden, C, Tourell, A, Castle, S, and Honey, J. Inspiratory muscle fatigue following race-paced swimming is not restricted to the front crawl stroke. J Strength Cond Res 26(10): 2729-2733, 2012-The occurrence of inspiratory muscle fatigue (IMF) has been documented after front crawl (FC) swimming of various distances. Whether IMF occurs after other competitive swimming strokes is not known. The aim of the present study was to assess the impact of all 4 competitive swimming strokes on the occurrence of IMF after race-paced swimming and to determine whether the magnitude of IMF was related to the breathing pattern adopted and hence breathing frequency (fb). Eleven, nationally ranked, youth swimmers completed four 200-m swims (one in each competitive stroke) on separate occasions. The order of the swims, which consisted of FC, backstroke (BK), breaststroke (BR), and butterfly (FLY), was randomized. Maximal inspiratory mouth pressure (MIP) was assessed before (after a swimming and inspiratory muscle warm-up) and after each swim with fb calculated post swim from recorded data. Inspiratory muscle fatigue was evident after each 200-m swim (p < 0.05) but did not differ between the 4 strokes (range 18-21%). No relationship (p > 0.05) was observed between fb and the change in MIP (FC: r = -0.456; BK: r = 0.218; BR: r = 0.218; and FLY: r = 0.312). These results demonstrate that IMF occurs in response to 200-m race-paced swimming in all strokes and that the magnitude of IMF is similar between strokes when breathing is ad libitum occurring no less than 1 breath (inhalation) every third stroke.  相似文献   

9.
A review of the literature on the flagellar undulations and phototactic movements of Euglena indicates that the flagellum functions as an ATP-using motor, triggered and mediated by cations, especially H3O+, K+, Mg2+ and Ca2+, and driven by energy from ATP. The undulatory waves are assumed to be started by means of repetitive pulses due to a redox reaction at the base of the flagellum. It is also assumed that the axoneme and paraflagellar rod are composed of asymmetrically-crystalline proteinaceous fibrils which are piezoelectric, i.e. they bend when energy passes through or along them, thus acting as a motor, and when bending they deliver a current, thus acting as a generator. This piezoelectric activity displaces cations and drives them ahead of it, triggering sequential bending and straightening of segments of the flagellum from base to tip. The paraflagellar swelling (“photoreceptor”) is also assumed to be piezoelectric, reactive to light, acting as a capacitor. It discharges as the intensity of light striking it is changed by the alternative shading effect of the stigma (“eyespot”) and exposure to light as the Euglena gyrates in swimming. The charge delivered by the photoreceptor augments the effects of ion-movements along the flagellum, also augmenting the amplitude and force of the flagellar undulations and altering the position of the flagellum relative to the body and the direction of swimming. The body is tipped away from the original path and swims either toward or away from the light, depending on the ultimate alteration of the path of swimming.  相似文献   

10.
11.
Three-dimensional, numerical simulations of the flow field arounda freely swimming model-copepod were performed using a finite-volumecode. The model copepod had a realistic body shape representedby a curvilinear body-fitted coordinate system. The beatingmovement of the cephalic appendages was replaced by a distributedforce field acting on the water ventrally adjacent to the copepod'sbody. In the simulations, we took into account that freely swimmingcopepods are self-propelled bodies through properly couplingthe Navier–Stokes equations with the dynamic equationfor the copepod's body. Flow fields were calculated for fivesteady motions: (1) hovering, (2) sinking, (3) upwards swimming,(4) backwards swimming and (5) forwards swimming. The numericalresults confirm the conclusions drawn from the theoretical analysisusing Stokes flow models by Jiang et al. [in a companion paper(Jiang et al., 2002a)] for a spherical copepod shape and showthat the geometry of the flow field around a freely swimmingcopepod varies significantly with the different swimming behaviours.When a copepod hovers in the water, or swims very slowly, itgenerates a cone-shaped and wide flow field. In contrast, whena copepod sinks, or swims fast, the flow geometry is not cone-shaped,but cylindrical, narrow and long. The relationships betweencopepods' swimming behaviour and body orientation, hydrodynamicconspicuousness, energetics as well as feeding efficiency werediscussed, based on the simulation data. It is shown that thebehaviour of hovering or swimming slowly is more energeticallyefficient in terms of relative capture volume per energy expendedthan the behaviour of swimming fast, i.e. for a same amountof energy expended a hovering or slow-swimming copepod is ableto scan more water than a fast-swimming one. The numerical resultsalso suggest that the flow field generated by a fast-swimmingcopepod enables the copepod to use mechanoreception to perceivethe food/prey and therefore increases the food concentrationin the swept volume and that the flow field around a free-sinkingcopepod favours the copepod's mechanoreception while minimizingthe energy expense, so that the energy budget can still be maintainedfor both cases.  相似文献   

12.
Rhodobacter sphaeroides is a photosynthetic bacterium which swims by rotating a single flagellum in one direction, periodically stopping, and reorienting during these stops. Free-swimming R. sphaeroides was examined by both differential interference contrast (DIC) microscopy, which allows the flagella of swimming cells to be seen in vivo, and tracking microscopy, which tracks swimming patterns in three dimensions. DIC microscopy showed that when rotation stopped, the helical flagellum relaxed into a high-amplitude, short-wavelength coiled form, confirming previous observations. However, DIC microscopy also revealed that the coiled filament could rotate slowly, reorienting the cell before a transition back to the functional helix. The time taken to reform a functional helix depended on the rate of rotation of the helix and the length of the filament. In addition to these coiled and helical forms, a third conformation was observed: a rapidly rotating, apparently straight form. This form took shape from the cell body out and was seen to form directly from flagella that were initially in either the coiled or the helical conformation. This form was always significantly longer than the coiled or helical form from which it was derived. The resolution of DIC microscopy made it impossible to identify whether this form was genuinely in a straight conformation or was a low-amplitude, long-wavelength helix. Examination of the three-dimensional swimming pattern showed that R. sphaeroides changed speed while swimming, sometimes doubling the swimming speed between stops. The rate of acceleration out of stops was also variable. The transformations in waveform are assumed to be torsionally driven and may be related to the changes in speed measured in free-swimming cells. The roles of and mechanisms that may be involved in the transformations of filament conformations and changes in swimming speed are discussed.  相似文献   

13.
Halobacterium halobium swims by rotating its polarly inserted flagellar bundle. The cells are attracted by green-to-orange light which they can use for photophosphorylation but flee damaging blue or ultraviolet light. It is generally believed that this kind of 'colour vision' is achieved by the combined action of two photoreceptor proteins, sensory rhodopsins-I and -II, that switch in the light the rotational sense of the bundle and in consequence the swimming direction of a cell. By expressing the bacteriorhodopsin gene in a photoreceptor-negative background we have now demonstrated the existence of a proton-motive force sensor (protometer) and the function of bacteriorhodopsin as an additional photoreceptor covering the high intensity range. When the bacteriorhodopsin-generated proton-motive force drops caused by a sudden decrease in light intensity, the cells respond by reversing their swimming direction. This response does not occur when the proton-motive force is saturated by respiration or fermentation.  相似文献   

14.
Though air-breathing has probably evolved mainly as a response to hypoxia, it may provide an important oxygen supplement when metabolism is elevated, as for example during swimming. Due to the increased travelling distance involved when an air-breathing fish swims to and from the surface, and the increased drag when the surface is breached, it can be proposed that air-breathing results in a rise in the apparent cost of transport. In order to investigate this hypothesis, it is necessary to use a fish that is able to swim equally well with and without access to air. The striped catfish Pangasianodon hypophthalmus has been shown to have a sufficiently high capacity for aquatic oxygen uptake in normoxia, to allow for such a comparison. Here, we measured the partitioning of oxygen uptake ( $ \dot{M}{\text{O}}_{2} $ ) during swimming and recovery, and calculated the apparent cost of transport with and without access to air, under normoxic conditions. Aerial $ \dot{M}{\text{O}}_{2} $ constituted 25–40 % of the total $ \dot{M}{\text{O}}_{2} $ during swimming and less than 15 % during recovery. The net cost of transport was 25 % lower in fish that did not air-breathe compared to fish that did, showing that the cost of surfacing can be substantial. This is the first study to measure partitioning in an air-breathing fish during swimming at velocities close to the critical swimming speed.  相似文献   

15.
《Behavioural processes》1986,12(3):215-226
Pteronemobius lineolatus swims landward visually guided by terrestrial and, at times, associated celestial cues.Crickets irrespective of their previous visual experience swim towards artificial black horizontal landmarks. Non shore-dwelling crickets select random directions when released, under blue sky, for the first time on water surface in the absence of landmarks. If old enough to swim larvae and adult crickets learn a compass direction, during their first swim and each new directional landward swimming, if there are conspicuous terrestrial landmarks.There is forgetting and relearning of celestial compass orientation.  相似文献   

16.
We studied postexercise physiology and behaviour of smallmouth bass (Micropterus dolomieu) that voluntarily ascended experimental raceways of varying length (20-50 m) against water velocities ranging from 8 to 120 cm/s. Our first objective was to link mean swimming speed to metabolism using patterns in postexercise muscle glycogen, muscle lactate, and plasma lactate. Our second objective was to examine several behavioural indices (attempt rate, success rate, and recovery time between an ascent and a subsequent attempt) and determine whether patterns in these data reflected those from the physiological measurements. Postexercise muscle glycogen and plasma lactate data suggest that smallmouth bass powered swimming speeds up to 70-80 cm/s using energy from aerobic processes. However, lactate did not begin to accumulate in the white muscle until speeds in excess of 120-130 cm/s were reached. The behavioural parameters measured did not indicate the presence of a physiological threshold at 70-80 cm/s; however, patterns in all factors changed appreciably when fish maintained speeds in excess of 120-130 cm/s. Therefore, it is clear that behaviour and physiology are tightly linked in this species and that maximum aerobic swimming capacity may not limit performance (or re-performance) during short-duration swims.  相似文献   

17.
Maximum oxygen consumption (Vo(2)) elicited by swimming in 20 degrees C water or by exposure to -2.5 degrees C in helium-oxygen (Helox) atmosphere is higher in mice selected for low (LA) than for high (HA) stress-induced analgesia (SIA) produced by swimming. However, this line difference is greater with respect to swim- than to cold-elicited Vo(2). To study the relationship between the analgesic and thermogenic mechanisms, we acclimated HA and LA mice to 5 degrees C or to daily swimming at 20 or 32 degrees C. Next, the acclimated mice were exposed to a Helox test at -2.5 degrees C and to a swim test at 20 degrees C to compare Vo(2) and hypothermia (DeltaT). Cold acclimation raised Vo(2) and decreased DeltaT. These effects were similar in both lines in the Helox test but were smaller in the HA than in the LA line in the swim test. HA and LA mice acclimated to 20 or 32 degrees C swims increased Vo(2) and decreased DeltaT elicited by swimming, but only HA mice acclimated to 20 degrees C swims increased Vo(2) and decreased DeltaT in the Helox test. We conclude that the between-line difference in swim Vo(2) results from a stronger modulation of thermogenic capacities of HA mice by a swim stress-related mechanism, resulting in SIA. We suggest that the predisposition to SIA observed in laboratory as well as wild animals may significantly affect both the results of laboratory measurements of Vo(2) and the interpretation of its intra- and interspecific variation.  相似文献   

18.
This study examined the effect of simultaneous supplementation of creatine and sodium bicarbonate on consecutive maximal swims. Sixteen competitive male and female swimmers completed, in a randomized order, 2 different treatments (placebo and a combination of creatine and sodium bicarbonate) with 30 days of washout period between treatments in a double-blind crossover procedure. Both treatments consisted of placebo or creatine supplementation (20 g per day) in 6 days. In the morning of the seventh day, there was placebo or sodium bicarbonate supplementation (0.3 g per kg body weight) during 2 hours before a warm-up for 2 maximal 100-m freestyle swims that were performed with a passive recovery of 10 minutes in between. The first swims were similar, but the increase in time of the second versus the first 100-m swimming time was 0.9 seconds less (p < 0.05) in the combination group than in placebo. Mean blood pH was higher (p < 0.01-0.001) in the combination group than in placebo after supplementation on the test day. Mean blood pH decreased (p < 0.05) similarly during the swims in both groups. Mean blood lactate increased (p < 0.001) during the swims, but there were no differences in peak blood lactate between the combination group (14.9 +/- 0.9 mmol.L(-1)) and placebo (13.4 +/- 1.0 mmol.L(-1)). The data indicate that simultaneous supplementation of creatine and sodium bicarbonate enhances performance in consecutive maximal swims.  相似文献   

19.
Swimming in the nudibranch Melibe leonina consists of five types of movements that occur in the following sequence: (1) withdrawal, (2) lateral flattening, (3) a series of lateral flexions, (4) unrolling and swinging, and (5) termination. Melibe swims spontaneously, as well as in response to different types of aversive stimuli. In this study, swimming was elicited by contact with the tube feet of the predatory sea star Pycnopodia helianthoides, pinching with forceps, or application of a 1 M KCl solution. During an episode of swimming, the duration of swim cycles (2.7 +/- 0.2 s [mean +/- SEM], n = 29) and the amplitude of lateral flexions remained relatively constant. However, the latency between the application of a stimulus and initiation of swimming was more variable, as was the duration of an episode of swimming. For example, when touched with a single tube foot from a sea star (n = 32), the latency to swim was 7.0 +/- 2.4 s, and swimming continued for 53.7 +/- 9.4 s, whereas application of KCl resulted in a longer latency to swim (22.3 +/- 4.5 s) and more prolonged swimming episodes (174.9 +/- 32.1 s). Swimming individuals tended to move in a direction perpendicular to the long axis of the foot, which propelled them laterally when they were oriented with the oral hood toward the surface of the water. The results of this study indicate that swimming in Melibe, like that in several other molluscs, is a stereotyped fixed action pattern that can be reliably elicited in the laboratory. These characteristics, along with the large identifiable neurons typical of many molluscs, make swimming in this nudibranch amenable to neuroethological analyses.  相似文献   

20.
Aglantha digitale swims in two ways: a slow rhythmical swim typical of hydromedusae in general and a sudden rapid movement that appears to be an escape response. The swimming musculature is an extremely well developed striated circular muscle layer that possesses a sarcoplasmic reticulum. The nervous system of this species can be divided into three units: an inner nerve ring and an outer nerve ring, which are joined by unusually large transmesogleal pathways, a group of giant axons that extends over the surface of the swimming muscle, and the radial canal. Well developed ciliated sensory cells are located on the exumbrellar surface of the margin. Consideration of these properties of the organisation of this species suggests that normal slow swimming is controlled by a mechanism similar to that found in other medusae, while the escape response is the result of the action of the giant axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号