首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA mismatch repair (MMR) proteins are essential for the maintenance of genomic stability of human cells. Compared with hereditary or even sporadic carcinomas, MMR gene mutations are very uncommon in leukemia. However, genetic instability, attested by either loss of heterozygosity or microsatellite instability, has been extensively documented in chronic or acute malignant myeloid disorders. This observation suggests that in leukemia some internal or external signals may interfere with MMR protein expression and/or function. We investigated the effects of protein kinase C (PKC) stimulation by 12-O-tetradecanoylphorbol-13-acetate (TPA) on MMR protein expression and activity in human myeloid leukemia cell lines. First, we show here that unstimulated U937 cells displayed low level of PKC activity as well as MMR protein expression and activity compared with a panel of myeloid cell lines. Second, treatment of U937 cells with TPA significantly increased (3-5-fold) hMSH2 expression and, to a lesser extent, hMSH6 and hPMS2 expression, correlated to a restoration of MMR function. In addition, diacylglycerol, a physiological PKC agonist, induced a significant increase in hMSH2 expression, whereas chelerythrine or calphostin C, two PKC inhibitors, significantly decreased TPA-induced hMSH2 expression. Reciprocally, treatment of HEL and KG1a cells that exhibited a high level of PKC expression, with chelerythrine significantly decreased hMSH2 and hMSH6 expression. Moreover, the alteration of MMR protein expression paralleled the difference in microsatellite instability and cell sensitivity to 6-thioguanine. Our results suggest that PKC could play a role in regulating MMR protein expression and function in some myeloid leukemia cells.  相似文献   

2.
Dendritic cells (DC) are professional APC that have an extraordinary capacity to prime naive T cells. It has been reported that human DC subsets express distinct toll-like receptor (TLR), which influences their function. In mice, we observed that plasmocytoid DC (pDC) express a higher level of TLR9 compared with myeloid DC (mDC) cultured with GM-CSF. However, we demonstrated that stimulation with IFN-gamma is capable of upregulating TLR9 expression in mDC to a level comparable with expression in pDC. Consistent with this observation, IL-12 p40 and IL-6 mRNA expression and IL-12 p70 secretion in response to CpG-oligodeoxynucleotides are enhanced in mDC pretreated with IFN-gamma compared with untreated cells. Therefore, TLR-mediated responses of DC subsets may be influenced not only by signals delivered by pathogens but also by regulatory signals from cytokines such as IFN-gamma.  相似文献   

3.
Iu B Iurov  S G Borsanova 《Tsitologiia》1987,29(11):1265-1269
Peculiarities of DNA replication in cultured human diploid fibroblasts in logarithmic and stationary phases were studied using DNA autoradiography. The rate of DNA replication fall from 30-36 mu/hour at active proliferative phase to 18-20 mu/hour at late stationary phase. This phenomenon is characteristic of stationary cultures after stimulation to proliferate by changing medium as well as by culturing without stimulation. Possible mechanisms of DNA replication rate alteration in senescent human cells are discussed.  相似文献   

4.
Decitabine (5-aza-2′-deoxycytidine) is a DNA methyltransferase inhibitor and an archetypal epigenetic drug for the therapy of myeloid leukemias. The mode of action of decitabine strictly depends on the incorporation of the drug into DNA. However, DNA incorporation and ensuing genotoxic effects of decitabine have not yet been investigated in human cancer cell lines or in models related to the approved indication of the drug. Here we describe a robust assay for the quantitative determination of decitabine incorporation rates into DNA from human cancer cells. Using a panel of human myeloid leukemia cell lines we show appreciable amounts of decitabine incorporation that closely correlated with cellular drug uptake. Decitabine incorporation was also detectable in primary cells from myeloid leukemia patients, indicating that the assay is suitable for biomarker analyses to predict drug responses in patients. Finally, we also used next-generation sequencing to comprehensively analyze the effects of decitabine incorporation on the DNA sequence level. Interestingly, this approach failed to reveal significant changes in the rates of point mutations and genome rearrangements in myeloid leukemia cell lines. These results indicate that standard rates of decitabine incorporation are not genotoxic in myeloid leukemia cells.  相似文献   

5.
BCR/ABL oncogene, as a result of chromosome aberration t(9;22), is the pathogenic principle of almost 95% of human chronic myeloid leukemia (CML). Imatinib (STI571) is a highly selective inhibitor of BCR/ABL oncogenic tyrosine kinase used in leukemia treatment. It has been suggested that BCR/ABL may contribute to the resistance of leukemic cells to drug and radiation through stimulation of DNA repair in these cells. To evaluate further the influence of STI571 on DNA repair we studied the efficacy of this process in BCR/ABL-positive and -negative cells using single cell electrophoresis (comet assay). In our experiments, K562 human chronic myeloid leukemia cells expressing BCR/ABL and CCRF-CEM human acute lymphoblastic leukemia cells without BCR/ABL expression were employed. The cells were exposed for 1 h at 37 degrees C to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) at 5 microM, mitomycin C (MMC) at 50 microM or to gamma-radiation at 15 Gy with or without a 24 h preincubation at 1 microM of STI571. The MTT cells survival after 4 days of culture showed that STI571 enhanced the cytotoxity of the examined compounds in the K562 line. Further it was found, that the inhibitor decreased the efficacy of DNA repair challenged by each agent, but only in the K562 expressing BCR/ABL. Due to the variety of DNA damage induced by the employed agents in this study we can speculate, that BCR/ABL may stimulate multiple pathways of DNA repair. These results extend our previous studies performed on BCR/ABL-transformed mouse cells onto human cells. It is shown that BCR/ABL stimulated DNA repair in human leukemia cells. In conclusion we report that STI571 was found to inhibit DNA repair and abrogate BCR/ABL-positive human leukemia cells therapeutic resistance.  相似文献   

6.
Although physiological development of human lymphoid subsets has become well documented in humanized mice, in vivo development of human myeloid subsets in a xenotransplantation setting has remained unevaluated. Therefore, we investigated in vivo differentiation and function of human myeloid subsets in NOD/SCID/IL2rγ(null) (NSG) mouse recipients transplanted with purified lineage(-)CD34(+)CD38(-) cord blood hematopoietic stem cells. At 4-6 mo posttransplantation, we identified the development of human neutrophils, basophils, mast cells, monocytes, and conventional and plasmacytoid dendritic cells in the recipient hematopoietic organs. The tissue distribution and morphology of these human myeloid cells were similar to those identified in humans. After cytokine stimulation in vitro, phosphorylation of STAT molecules was observed in neutrophils and monocytes. In vivo administration of human G-CSF resulted in the recruitment of human myeloid cells into the recipient circulation. Flow cytometry and confocal imaging demonstrated that human bone marrow monocytes and alveolar macrophages in the recipients displayed intact phagocytic function. Human bone marrow-derived monocytes/macrophages were further confirmed to exhibit phagocytosis and killing of Salmonella typhimurium upon IFN-γ stimulation. These findings demonstrate the development of mature and functionally intact human myeloid subsets in vivo in the NSG recipients. In vivo human myelopoiesis established in the NSG humanized mouse system may facilitate the investigation of human myeloid cell biology including in vivo analyses of infectious diseases and therapeutic interventions.  相似文献   

7.
8.
Cell-cycle-dependent expression of human ornithine decarboxylase   总被引:1,自引:0,他引:1  
A human ornithine decarboxylase (ODC) gene probe has been isolated from a Jurkat T-cell cDNA expression library, sequenced, and used to analyze ODC mRNA levels in untransformed human lymphocytes and fibroblasts stimulated to proliferate by various mitogens. The partial cDNA sequence is 86% homologous to the mouse ODC cDNA, and Northern blots indicate that the human and mouse mRNA species are similar in size. ODC mRNA is barely detectable in quiescent human T lymphocytes and undetectable in density-arrested W138 fibroblasts. Following stimulation of T-lymphocyte proliferation with phytohemagglutinin, the ODC mRNA level rises to a peak around mid G1 phase and decreases as the cells enter S phase. Serum stimulation of density-arrested fibroblasts results in an elevation of the ODC mRNA level which persists throughout the cell cycle. Epidermal growth factor (20 ng/ml) but not insulin (10 mg/ml) or dexamethasone (55 ng/ml) stimulates ODC expression in quiescent W138 fibroblasts. Southern blots suggest that human cells have a single copy of the ODC gene.  相似文献   

9.
In the past, a highly sensitive and efficient method was developed to map DNA replication origins in human cells, based on quantitative PCR performed on nascent DNA samples. This method allowed the identification of a replication origin in the myeloid HL-60 cell line, located on chromosome 19 within an approximately 500 bp segment near the lamin B2 gene [Giacca et al. (1994) Proc. Natl. Acad. Sci. USA, 91, 7119]. The same procedure has now been further simplified and extended to a variety of other exponentially growing human cells of different histological derivation (three neural, one connectival and one epithelial), with a nearly diploid chromosomal content. In all the six cell lines tested, the origin activity within the lamin B2 gene domain was localized to the same region. Furthermore, the lamin B2 origin was also found to be active in stimulated, but not in quiescent, peripheral blood lymphocytes.  相似文献   

10.
IL-18 is a pluripotent proinflammatory cytokine produced primarily by antigen presenting cells involved in numerous aspects of immune regulation most notably on lymphoid cells. The effect of IL-18 stimulation on cells in the myeloid compartment, however, has been poorly studied. Human monocytes did not respond to IL-18. However, the human myelomonocytic cell line KG-1 and monocyte-derived dendritic cells (generated by GM-CSF+IL-4) showed a marked increase in CD83, HLA-DR, and several costimulatory molecules upon stimulation with IL-18. Furthermore, IL-18 decreased pinocytosis of these cells and increased their ability to stimulate alloreactive T cell proliferation, all characteristics of mature dendritic cells. These results suggest that IL-18 is involved in the maturation of myeloid DCs, but not differentiation of monocytes into DCs. The finding that IL-18 is involved in the maturation of dendritic cells is both novel and unexpected and indicates another important role for IL-18 as a key regulator of immune responses.  相似文献   

11.
Macrophage colony-stimulating factor (M-CSF) is a physiological regulator of monocyte-macrophage lineage. Ectopic expression of the M-CSF receptor (M-CSFR, or Fms) in murine myeloid cell line FDC-P1 (FD/Fms cells) results in M-CSF-dependent macrophage differentiation. Previously, we observed that M-CSF induces two temporally distinct phases of mitogen-activated protein kinase (MAPK) phosphorylation. Here we show that levels of phosphorylated MAPK kinase MEK1 follow the same kinetics as MAPK phosphorylation, characterized by an early and transient phase (the first 30 min of M-CSF stimulation) and a late and persistent phase from 4 h of stimulation. The MEK inhibitor U0126 strongly inhibited both phases of MAPK phosphorylation as well as FD/Fms cell differentiation, indicating that MAPK may relay M-CSF differentiation signaling downstream of M-CSFR. Treatment of FD/Fms cells with U0126 during the first hour of M-CSF stimulation reversibly blocked the early phase of MAPK phosphorylation but did not affect differentiation. In contrast, U0126 still inhibited FD/Fms cell differentiation when its addition was delayed by 24 h. This demonstrated that late and persistent MEK activity is specifically required for macrophage differentiation to occur. Furthermore, disrupting Grb2-Sos complexes with a specific blocking peptide did not prevent FD/Fms cells differentiation in response to M-CSF, nor did it abolish MAPK phosphorylation. The role of phosphatidylinositol 3-kinase (PI 3-kinase), another potential regulator of the MAPK pathway, was examined using the specific inhibitor LY294002. This compound could not impede FD/Fms cell commitment to macrophage differentiation and did not significantly affect MAPK phosphorylation in response to M-CSF. Therefore, M-CSF differentiation signaling in myeloid progenitor cells is mediated through persistent MEK activity but it is not strictly dependent upon Grb2-Sos interaction or PI 3-kinase activity.  相似文献   

12.
锌指基因是一种造血调节基因,编码锌指结构蛋白,主要在髓细胞中表达,促进髓细胞分化,在急性早幼粒白血病维甲酸治疗中,促使病情缓解。本文报道了我们从基因分子上研究锌指基因作用中,探索并建立了单向聚合酶链反应(PCR)扩增特定单链DNA,直接测序的新方法。它能产生质和量均佳的单链DNA,无需纯化即可直接用于测序,使复杂的测序研究简便易行,可在2,3天内完成。这种单向PCR扩增特定单链DNA直接测序的方法,经对锌指基因的cDNA测序,得到验证。此法不仅适用于疾病研究中的DNA测序,还可制各单链DNA探针,更利于基因结构组成的研究。  相似文献   

13.
The development of flow cytometric biomarkers in human studies and clinical trials has been slowed by inconsistent sample processing, use of cell surface markers, and reporting of immunophenotypes. Additionally, the function(s) of distinct cell types as biomarkers cannot be accurately defined without the proper identification of homogeneous populations. As such, we developed a method for the identification and analysis of human leukocyte populations by the use of eight 10-color flow cytometric protocols in combination with novel software analyses. This method utilizes un-manipulated biological sample preparation that allows for the direct quantitation of leukocytes and non-overlapping immunophenotypes. We specifically designed myeloid protocols that enable us to define distinct phenotypes that include mature monocytes, granulocytes, circulating dendritic cells, immature myeloid cells, and myeloid derived suppressor cells (MDSCs). We also identified CD123 as an additional distinguishing marker for the phenotypic characterization of immature LIN-CD33+HLA-DR- MDSCs. Our approach permits the comprehensive analysis of all peripheral blood leukocytes and yields data that is highly amenable for standardization across inter-laboratory comparisons for human studies.  相似文献   

14.
15.
An assay of adenosine(5')tetraphospho(5')adenosine (Ap4A), based on the luciferin/luciferase method for ATP measurement, was developed, which allows one to determine picomolar amounts of unlabeled Ap4A in cellular extracts. In eukaryotic cells this method yielded levels of Ap4A varying from 0.01 microM to 13 microM depending on the growth, cell cycle, transformation, and differentiation state of cells. After mitogenic stimulation of G1-arrested mouse 3T3 and baby hamster kidney fibroblasts the Ap4A pools gradually increased 1000-fold during progression through the G1 phase reaching maximum Ap4A concentrations of about 10 microM in the S phase. Quiescent 3T3 cells reach a high level of Ap4A (1 microM) in a 'committed' but prereplicative state if exposed to an external mitogenic stimulant (excess of serum) and simultaneously to a synchronizer which inhibits entry into the S phase (hydroxyurea). When the block for DNA replication was removed at varying times after removal of the stimulant decay of commitment to DNA synthesis was found correlated with a shrinkage of the Ap4A pool. Cells lacking a defined G1 phase (V79 lung fibroblasts, Physarum) possess a constitutively high base level of Ap4A (about 0.3 microM) even during mitosis. From this high level, Ap4A concentration increases only about tenfold during the S phase. Temperature-down-shift experiments, using chick embryo cells infected with transformation-defective temperature-sensitive viral mutants(td-ts), have shown that the expression of the transformed state at 35 degrees C is accompanied by a tenfold increase of the cellular Ap4A pool. Treatment of exponentially growing human cells with interferon leads, concomitantly with an inhibition of DNA syntheses, to a tenfold decrease in intracellular Ap4A levels within 20 h. The possibility of Ap4A being a 'second messenger' of cell cycle and proliferation control is discussed in the light of these results and those reported previously demonstrating that Ap4A is a ligand of mammalian DNA polymerase alpha, triggers DNA replication in quiescent mammalian cells and is active in priming DNA synthesis.  相似文献   

16.
Tumor exosomes inhibit differentiation of bone marrow dendritic cells   总被引:1,自引:0,他引:1  
The production of exosomes by tumor cells has been implicated in tumor-associated immune suppression. In this study, we show that, in mice, exosomes produced by TS/A murine mammary tumor cells target CD11b(+) myeloid precursors in the bone marrow (BM) in vivo, and that this is associated with an accumulation of myeloid precursors in the spleen. Moreover, we demonstrate that TS/A exosomes block the differentiation of murine myeloid precursor cells into dendritic cells (DC) in vitro. Addition of tumor exosomes at day 0 led to a significant block of differentiation into DC, whereas addition at later time points was less effective. Similarly, exosomes produced by human breast tumor cells inhibited the differentiation of human monocytes in vitro. The levels of IL-6 and phosphorylated Stat3 were elevated 12 h after the tumor exosome stimulation of murine myeloid precursors, and tumor exosomes were less effective in inhibiting differentiation of BM cells isolated from IL-6 knockout mice. Addition of a rIL-6 to the IL-6 knockout BM cell culture restored the tumor exosome-mediated inhibition of DC differentiation. These data suggest that tumor exosome-mediated induction of IL-6 plays a role in blocking BM DC differentiation.  相似文献   

17.
T Metz  T Graf    A Leutz 《The EMBO journal》1991,10(4):837-844
A non-leukemogenic version of the v-myb oncogene causes in vitro transformation of avian myeloblasts, which are dependent on chicken myelomonocytic growth factor (cMGF). We have shown that this version of v-myb, when combined with the erythroleukemia-inducing v-erbB oncogene, is capable of causing a mixed myeloid and erythroid leukemia. Myeloid leukemic cells transformed by this construct produce cMGF. To test whether autocrine growth stimulation via cMGF is the essential contribution of the tyrosine kinase oncogene v-erbB in avian myeloid leukemogenesis we constructed another retrovirus containing both the non-leukemogenic v-myb and the cMGF cDNA. This virus induced myeloid leukemia at high efficiency. In a third construct we combined v-myb with the human EGF-receptor gene. Myeloid cells transformed by this construct could be stimulated to grow by the addition of cMGF or EGF. Growth stimulation with EGF was blocked by a cMGF antiserum indicating that activation of a normal tyrosine kinase-type receptor induces cMGF expression but does not bypass the cMGF requirement. We conclude that cMGF plays a key role in the growth regulation of normal and transformed avian myeloid cells.  相似文献   

18.
目的:研究氟苯达唑对人急性髓系白血病HL-60细胞增殖的抑制作用,明确氟苯达唑对HL-60细胞周期,凋亡发生的作用机制。方法:噻唑蓝法(MTT)检测氟苯达唑对人急性髓系白血病HL-60细胞的生长抑制作用,流式细胞术检测氟苯达唑对HL-60细胞周期,DNA片段化的影响,免疫印迹法检测Caspase, Raf, Bcl-2家族蛋白表达。结果:氟苯达唑抑制人急性髓系白血病HL-60细胞生长,HL-60细胞G2/M期增加,与阴性对照组相比,在一定的剂量和时间内,差别具有显著统计学意义;DNA片段化上升,0.25,0.5,1μM组与对照组相比差别具有显著统计学意义,促使Cleaved PARP,Cleaved-caspase 3,Cleaved-caspase 9蛋白表达量趋势增加;Bag-1和Bcl-2蛋白表达量降低;b-raf,c-raf磷酸化蛋白表达水平逐渐降低。结论:氟苯达唑通过诱导HL-60细胞阻滞于G2/M期,增加DNA片段化水平,激活Caspase, Raf, Bcl-2家族介导的凋亡相关通路抑制人急性髓系白血病HL-60细胞增殖,诱导人急性髓系白血病HL-60细胞发生凋亡而发挥抗肿瘤作用。  相似文献   

19.
A characteristic DNA rearrangement, the loss of an EcoRI cleavage site next to the 3'-end of the human c-mos gene, has been found to be frequently present in DNA from transformed hematopoietic cells of the myeloid lineage but not in DNA from either normal or transformed cells of different tissue types. Three established cell lines, respectively a pro-monocytic line (CM-S) and two precursor granulocytic lines (My/K1 and My/K5), carry the same genome rearrangement, but not fibroblasts obtained from the marrow of the same patients. This DNA rearrangement is maintained in three different hybridomas derived by fusion of CM-S cells with normal human embryo hepatocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号