首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alanine scanning mutagenesis of the HyHEL-10 paratope of the HyHEL-10/HEWL complex demonstrates that the energetically important side chains (hot spots) of both partners are in contact. A plot of deltadeltaG(HyHEL-10_mutant) vs. deltadeltaG(HEWL_mutant) for the five of six interacting side-chain hydrogen bonds is linear (Slope = 1). Only 3 of the 13 residues in the HEWL epitope contribute >4 kcal/mol to the free energy of formation of the complex when replaced by alanine, but 6 of the 12 HyHEL-10 paratope amino acids do. Double mutant cycle analysis of the single crystallographically identified salt bridge, D32H/K97, shows that there is a significant energetic penalty when either partner is replaced with a neutral side-chain amino acid, but the D32(H)N/K97M complex is as stable as the WT. The role of the disproportionately high number of Tyr residues in the CDR was evaluated by comparing the deltadeltaG values of the Tyr --> Phe vs. the corresponding Tyr --> Ala mutations. The nonpolar contacts in the light chain contribute only about one-half of the total deltadeltaG observed for the Tyr --> Ala mutation, while they are significantly more important in the heavy chain. Replacement of the N31L/K96 hydrogen bond with a salt bridge, N31D(L)/K96, destabilizes the complex by 1.4 kcal/mol. The free energy of interaction, deltadeltaG(int), obtained from double mutant cycle analysis showed that deltadeltaG(int) for any complex for which the HEWL residue probed is a major immunodeterminant is very close to the loss of free energy observed for the HyHEL-10 single mutant. Error propagation analysis of double mutant cycles shows that data of atypically high precision are required to use this method meaningfully, except where large deltadeltaG values are analyzed.  相似文献   

2.
The rate constants, k(on), for the formation of hen (chicken) lysozyme (HEWL). Fab-10 complexes have been determined for wild-type (WT) and epitope-mutated lysozymes by a homogeneous solution method based on the 95% reduced enzymatic activity of the complex. The values fall within a narrow 10-fold range [(0.18 to 1.92) x 10(6) M(-1)s(-l)]. The affinity constants, K(D), cover a broader, 440-fold, range from 0.075 to 33 nM. Values of K(D) as high as 7 microM were obtained for the complexes prepared from some mutations at HEWL positions 96 and 97, but the associated kinetic constants could not be determined. The values of k(on) are negatively correlated with side-chain volume at position 101HEWL, but are essentially independent of this parameter for position 21HEWL substitutions. The multiple mutations made at positions 21HEWL and 101HEWL provide sufficient experimental data on complex formation to evaluate phi values [phi = (deltadeltaGon)/(deltadeltaG(D))] at these two positions to begin to define trajectories for protein-protein association. The data, when interpreted within the concept of a two-step association sequence embracing a metastable encounter complex intermediate, argue that the rate determining step at position 21HEWL (phiavg = 0.2) is encounter complex formation, but the larger phi(avg) value of 0.36 experienced for most position 101HEWL mutations indicates a larger contribution from the post-encounter annealing process at this site for these replacements.  相似文献   

3.
Alanine-scanning mutagenesis, X-ray crystallography, and double mutant cycles were used to characterize the interface between the anti-hen egg white lysozyme (HEL) antibody HyHEL-63 and HEL. Eleven HEL residues in contact with HyHEL-63 in the crystal structure of the antigen-antibody complex, and 10 HyHEL-63 residues in contact with HEL, were individually truncated to alanine in order to determine their relative contributions to complex stabilization. The residues of HEL (Tyr20, Lys96, and Lys97) most important for binding HyHEL-63 (Delta G(mutant) - Delta G(wild type) > 3.0 kcal/mol) form a contiguous patch at the center of the surface contacted by the antibody. Hot spot residues of the antibody (Delta Delta G > 2.0 kcal/mol) are organized in two clusters that juxtapose hot spot residues of HEL, resulting in energetic complementarity across the interface. All energetically critical residues are centrally located, shielded from solvent by peripheral residues that contribute significantly less to the binding free energy. Although HEL hot spot residues Lys96 and Lys97 make similar interactions with antibody in the HyHEL-63/HEL complex, alanine substitution of Lys96 results in a nearly 100-fold greater reduction in affinity than the corresponding mutation in Lys97. To understand the basis for this marked difference, we determined the crystal structures of the HyHEL-63/HEL Lys96Ala and HyHEL-63/HEL Lys97Ala complexes to 1.80 and 1.85 A resolution, respectively. Whereas conformational changes in the proteins and differences in the solvent networks at the mutation sites appear too small to explain the observed affinity difference, superposition of free HEL in different crystal forms onto bound HEL in the wild type and mutant HyHEL-63/HEL complexes reveals that the side-chain conformation of Lys96 is very similar in the various structures, but that the Lys97 side chain displays considerable flexibility. Accordingly, a greater entropic penalty may be associated with quenching the mobility of the Lys97 than the Lys96 side chain upon complex formation, reducing binding. To further dissect the energetics of specific interactions in the HyHEL-63/HEL interface, double mutant cycles were constructed to measure the coupling of 13 amino acid pairs, 11 of which are in direct contact in the crystal structure. A large coupling energy, 3.0 kcal/mol, was found between HEL residue Lys97 and HyHEL-63 residue V(H)Asp32, which form a buried salt bridge surrounded by polar residues of the antigen. Thus, in contrast to protein folding where buried salt bridges are generally destabilizing, salt bridges in protein-protein interfaces, whose residual composition is more hydrophilic than that of protein interiors, may contribute significantly to complex stabilization.  相似文献   

4.
Rajpal A  Kirsch JF 《Proteins》2000,40(1):49-57
Seven of the 13 non-glycine contact amino acids in the hen (chicken) egg white lysozyme (HEWL) epitope for antibody Fab-10 each contribute < or =0.3 kcal/mol to the change in free energy (DeltaDeltaG(D)) from wild type (WT) when replaced by alanine (nullspots), and three others each give (0.7 < DeltaDeltaG(D) < or = 1. 0) kcal/mol (warm spots) (Rajpal et al. Protein Sci 1998;7:1868-1874). The low DeltaDeltaG(D) values introduced by alanine mutations present an opportunity to explore accurately their cumulative effects, as the sum of the combined DeltaDeltaG(D) values is not so large as to destabilize the complex beyond the range of accurate measurement. Substitution of six of the seven null spot residues by alanine leads to a cumulative DeltaDeltaG(D) = 2.25 +/- 0.04 kcal/mol, whereas the sum of the six individual changes is only -0.36 +/- 0.32 kcal/mol. The triple warm spot mutation generates a DeltaDeltaG(D) = 5.11 +/- 0.06 kcal/mol versus DeltaDeltaG(D) = 2.52 +/- 0.22 kcal/mol for the sum of the three individuals. The non-additivity in the individual DeltaDeltaG(D) values for the alanine mutations may indicate that these residues provide a conformationally stabilizing effect on the hot spot residues, each of which exhibits DeltaDeltaG(D) > 4.0 kcal/mol on alanine substitution.  相似文献   

5.
The anti-hen egg-white lysozyme (HEWL) antibodies HyHEL-10 and F9.13.7 recognize a common epitope. The structures of the complexes differ, however, in the numbers of electrostatic and hydrogen-bond interactions and in the distributions of contacts between the light and heavy chains. The equilibria and kinetics characterizing the F9.13.7 complex formation were evaluated for both wild-type and mutant derivatives of HEWL to help to understand how the different contacts are effectively used in the complexes with the two antibodies. Three epitope hot spots, Y20, K96, and R73 (destabilization > 4 kcal/mole), were found by alanine scanning mutagenesis. The first two constitute two of the three hot spots in the HyHEL-10 complex. The hot spots of the HyHEL-10 paratope are centered on the HEWL epitope; whereas R73 (HEWL), the only important light-chain-contacting residue, is clearly separated from the other hot spots of the F9.13.7 complex. The larger number of epitope warm plus hot spots found in the F9.13.7 complex compared with that of HyHEL-10 shows that the specificity of the former is greater even though the K(D) value is 20-fold larger. Conservative mutations showed that the specificity enhancement is related to the greater number of functional polar and hydrogen bond interactions in the F9.13.7 complex. Alanine scanning mutagenesis would not have illuminated these distinctions. It is shown that the concept of antigen specificity, as defined by cross-reactivity with natural variant antigens, is flawed by phylogenetic bias, and that specificity can only be defined by the use of unbiased epitopes, which are conveniently accessed by site-directed mutagenesis.  相似文献   

6.
Myles T  Le Bonniec BF  Betz A  Stone SR 《Biochemistry》2001,40(16):4972-4979
Electrostatic interactions between the thrombin anion-binding exosite-I (ABE-I) and the hirudin C-terminal tail play an important role in the formation of the thrombin-hirudin inhibitor complex and serves as a model for the interactions of thrombin with its many other ligands. The role of each solvent exposed basic residue in ABE-I (Arg(35), Lys(36), Arg(67), Arg(73), Arg(75), Arg(77a), Lys(81), Lys(109), Lys(110), and Lys(149e)) in electrostatic steering and ionic tethering in the formation of thrombin-hirudin inhibitor complexes was explored by site directed mutagenesis. The contribution to the binding energy (deltaG(degrees)b) by each residue varied from 1.9 kJ mol(-)(1) (Lys(110)) to 15.3 kJ mol(-1) (Arg(73)) and were in general agreement to their observed interactions with hirudin residues in the thrombin-hirudin crystal structure [Rydel, T. J., Tulinsky, A., Bode, W., and Huber, R. (1991) J. Mol. Biol. 221, 583-601]. Coupling energies (delta deltaG(degrees) int) were calculated for the major ion-pair interactions involved in ionic tethering using complementary hirudin mutants (h-D55N, h-E57Q, and h-E58Q). Cooperativity was seen for the h-Asp(55)/Arg(73) ion pair (2.4 kJ mol(-1)); however, low coupling energies for h-Asp(55)/Lys(149e) (deltadeltaG(degrees)int 0.6 kJ mol(-1)) and h-Glu(58)/Arg(77a) (deltadeltaG(degrees)int 0.9 kJ mol(-1)) suggest these are not major interactions, as anticipated by the crystal structure. Interestingly, high coupling energies were seen for the intermolecular ion-pair h-Glu(57)/Arg(75) (deltadeltaG(degrees)int 2.3 kJ mol(-1)) and for the solvent bridge h-Glu(57)/Arg(77a) (deltadeltaG(degrees)int 2.7 kJ mol(-1)) indicating that h-Glu(57) interacts directly with both Arg(75) and Arg(77a) in the thrombin-hirudin inhibitor complex. The remaining ABE-I residues that do not form major contacts in tethering the C-terminal tail of hirudin make small but collectively important contributions to the overall positive electrostatic field generated by ABE-I important in electrostatic steering.  相似文献   

7.
To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu(98), Tyr(143), Ile(151), Arg(3704), Lys(192), and Tyr(5901)) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal K(m) values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of k(cat) for S-2366 hydrolysis. All six Ala mutants displayed deficient k(cat) values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of K(i) except for K192A, and Y5901A, which displayed increased values of K(i). The integrity of the S1 binding site residue, Asp(189), utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr(143), Ile(151), Arg(3704), and Tyr(5901)) are important for S-2366 hydrolysis; Glu(98) and Lys(192) are essential for FIX but not S-2366 hydrolysis; and Lys(192) and Tyr(5901) are required for both inhibitor and macromolecular substrate interactions.  相似文献   

8.
The contributions to substrate binding and catalysis of 13 amino acid residues of the Caenorhabditis elegans diadenosine tetraphosphate pyrophosphohydrolase (Ap(4)A hydrolase) predicted from the crystal structure of an enzyme-inhibitor complex have been investigated by site-directed mutagenesis. Sixteen glutathione S-transferase-Ap(4)A hydrolase fusion proteins were expressed and their k(cat) and K(m) values determined after removal of the glutathione S-transferase domain. As expected for a Nudix hydrolase, the wild type k(cat) of 23 s(-1) was reduced by 10(5)-, 10(3)-, and 30-fold, respectively, by replacement of the conserved P(4)-phosphate-binding catalytic residues Glu(56), Glu(52), and Glu(103) by Gln. K(m) values were not affected, indicating a lack of importance for substrate binding. In contrast, mutating His(31) to Val or Ala and Lys(83) to Met produced 10- and 16-fold increases in K(m) compared with the wild type value of 8.8 microm. These residues stabilize the P(1)-phosphate. H31V and H31A had a normal k(cat) but K83M showed a 37-fold reduction in k(cat). Lys(36) also stabilizes the P(1)-phosphate and a K36M mutant had a 10-fold reduced k(cat) but a relatively normal K(m). Thus both Lys(36) and Lys(83) may play a role in catalysis. The previously suggested roles of Tyr(27), His(38), Lys(79), and Lys(81) in stabilizing the P(2) and P(3)-phosphates were not confirmed by mutagenesis, indicating the absence of phosphate-specific binding contacts in this region. Also, mutating both Tyr(76) and Tyr(121), which clamp one substrate adenosine moiety between them in the crystal structure, to Ala only increased K(m) 4-fold. It is concluded that interactions with the P(1)- and P(4)-phosphates are minimum and sufficient requirements for substrate binding by this class of enzyme, indicating that it may have a much wider substrate range then previously believed.  相似文献   

9.
An intricate architecture of covalent bonds and noncovalent interactions appear to position the side chain of Lys 41 properly within the active site of bovine pancreatic ribonuclease A (RNase A). One of these interactions arises from Tyr 97, which is conserved in all 41 RNase A homologues of known sequence. Tyr 97 has a solvent-inaccessible side chain that donates a hydrogen bond to the main-chain oxygen of Lys 41. Here, the role of Tyr 97 was examined by replacing Tyr 97 with a phenylalanine, alanine, or glycine residue. All three mutant proteins have diminished catalytic activity, with the value of Kcat being perturbed more significantly than that of Km. The free energies with which Y97F, Y97A, and Y97G RNase A bind to the rate-limiting transition state during the cleavage of poly(cytidylic acid) are diminished by 0.74, 3.3, and 3.8 kcal/mol, respectively. These results show that even though Tyr 97 is remote from the active site, its side chain contributes to catalysis. The role of Tyr 97 in the thermal stability of RNase A is large. The conformational free energies of native Y97F, Y97A, and Y97G RNase A are decreased by 3.54, 12.0, and 11.7 kcal/mol, respectively. The unusually large decrease in stability caused by the Tyr-->Phe mutation could result from a decrease in the barrier to isomerization of the Lys 41-Pro 42 peptide bond.  相似文献   

10.
Kim A. Sharp 《Proteins》1998,33(1):39-48
The change in free energy of binding of hen egg white lysozyme (HEL) to the antibody HyHel-10 arising from ten point mutations in HEL (D101K, D101G, K96M, K97D, K97G, K97G, R21E, R21K, W62Y, and W63Y) was calculated using a combination of the finite difference Poisson-Boltzmann method for the electrostatic contribution, a solvent accessible surface area term for the non-polar contribution, and rotamer counting for the sidechain entropy contribution. Comparison of experimental and calculated results indicate that because of pKa shifts in some of the mutated residues, primarily those involving Aspartate or Glutamate, proton uptake or release occurs in binding. When this effect was incorporated into the binding free energy calculations, the agreement with experiment improved significantly, and resulted in a mean error of about 1.9 kcal/mole. Thus these calculations predict that there should be a significant pH dependence to the change in binding caused by these mutations. The other major contributions to binding energy changes comes from solvation and charge charge interactions, which tend to oppose each other. Smaller contributions come from nonpolar interactions and sidechain entropy changes. The structures of the HyHel-10-HEL complexes with mutant HEL were obtained by modeling, and the effect of the modeled structure on the calculations was also examined. “Knowledge based” modeling and automatic generation of models using molecular mechanics produced comparable results. Proteins 33:39–48, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Lee JE  Raines RT 《Biochemistry》2003,42(39):11443-11450
Onconase (ONC), a homologue of ribonuclease A (RNase A), is in clinical trials for the treatment of cancer. ONC possesses a conserved active-site catalytic triad, which is composed of His10, Lys31, and His97. The three-dimensional structure of ONC suggests that two additional residues, Lys9 and an N-terminal lactam formed from a glutamine residue (Pca1), could also contribute to catalysis. To determine the role of Pca1, Lys9, and Lys31 in the function of ONC, site-directed mutagenesis was used to replace each with alanine. Values of k(cat)/K(M) for the variants were determined with a novel fluorogenic substrate, which was designed to match the nucleobase specificity of ONC and gives the highest known k(cat)/K(M) value for the enzyme. The K9A and K31A variants display 10(3)-fold lower k(cat)/K(M) values than the wild-type enzyme, and a K9A/K31A double variant suffers a >10(4)-fold decrease in catalytic activity. In addition, replacing Lys9 or Lys31 eliminates the antitumoral activity of ONC. The side chains of Pca1 and Lys9 form a hydrogen bond in crystalline ONC. Replacing Pca1 with an alanine residue lowers the catalytic activity of ONC by 20-fold. Yet, replacing Pca1 in the K9A variant enzyme does not further reduce catalytic activity, revealing that the function of the N-terminal pyroglutamate residue is to secure Lys9. The thermodynamic cycle derived from k(cat)/K(M) values indicates that the Pca1...Lys9 hydrogen bond contributes 2.0 kcal/mol to the stabilization of the rate-limiting transition state during catalysis. Finally, binding isotherms with a substrate analogue indicate that Lys9 and Lys31 contribute little to substrate binding and that the low intrinsic catalytic activity of ONC originates largely from the low affinity of the enzyme for its substrate. These findings could assist the further development of ONC as a cancer chemotherapeutic.  相似文献   

12.
The role of general acid-base catalysis in the enzymatic mechanism of NADP+-dependent malic enzyme was examined by detailed steady-state kinetic studies through site-directed mutagenesis of the Tyr(91) and Lys(162) residues in the putative catalytic site of the enzyme. Y91F and K162A mutants showed approx. 200- and 27000-fold decreases in k(cat) values respectively, which could be partially recovered with ammonium chloride. Neither mutant had an effect on the partial dehydrogenase activity of the enzyme. However, both Y91F and K162A mutants caused decreases in the k(cat) values of the partial decarboxylase activity of the enzyme by approx. 14- and 3250-fold respectively. The pH-log(k(cat)) profile of K162A was found to be different from the bell-shaped profile pattern of wild-type enzyme as it lacked a basic pK(a) value. Oxaloacetate, in the presence of NADPH, can be converted by malic enzyme into L-malate by reduction and into enolpyruvate by decarboxylation activities. Compared with wild-type, the K162A mutant preferred oxaloacetate reduction to decarboxylation. These results are consistent with the function of Lys(162) as a general acid that protonates the C-3 of enolpyruvate to form pyruvate. The Tyr(91) residue could form a hydrogen bond with Lys(162) to act as a catalytic dyad that contributes a proton to complete the enol-keto tautomerization.  相似文献   

13.
Paddock ML  Weber KH  Chang C  Okamura MY 《Biochemistry》2005,44(28):9619-9625
The cation-pi interaction between positively charged and aromatic groups is a common feature of many proteins and protein complexes. The structure of the complex between cytochrome c(2) (cyt c(2)) and the photosynthetic reaction center (RC) from Rhodobacter sphaeroides exhibits a cation-pi complex formed between Arg-C32 on cyt c(2) and Tyr-M295 on the RC [Axelrod, H. L., et al. (2002) J. Mol. Biol. 319, 501-515]. The importance of the cation-pi interaction for binding and electron transfer was studied by mutating Tyr-M295 and Arg-C32. The first- and second-order rates for electron transfer were not affected by mutating Tyr-M295 to Ala, indicating that the cation-pi complex does not greatly affect the association process or structure of the state active in electron transfer. The dissociation constant K(D) showed a greater increase when Try-M295 was replaced with nonaromatic Ala (3-fold) as opposed to aromatic Phe (1.2-fold), which is characteristic of a cation-pi interaction. Replacement of Arg-C32 with Ala increased K(D) (80-fold) largely due to removal of electrostatic interactions with negatively charged residues on the RC. Replacement with Lys increased K(D) (6-fold), indicating that Lys does not form a cation-pi complex. This specificity for Arg may be due to a solvation effect. Double mutant analysis indicates an interaction energy between Tyr-M295 and Arg-C32 of approximately -24 meV (-0.6 kcal/mol). This energy is surprisingly small considering the widespread occurrence of cation-pi complexes and may be due to the tradeoff between the favorable cation-pi binding energy and the unfavorable desolvation energy needed to bury Arg-C32 in the short-range contact region between the two proteins.  相似文献   

14.
To elucidate a role of the Src homology 3 (SH3)-conserved acidic residue Asp21 of the phosphatidylinositol 3-kinase (PI3K) SH3 domain, structural changes induced by the D21N mutation (Asp21 --> Asn) were examined by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. In the previous study, we demonstrated that environmental alterations occurred at the side chains of Trp55 and some Tyr residues from the comparison of the near-UV CD spectra of the PI3K SH3 domain with or without a D21N mutation [Okishio, N., et al. (2000) Biopolymers 57, 208-217]. In this work, the affected Tyr residues were identified as Tyr14 and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue with or without a D21N mutation. The (1)H and (15)N resonance assignments of the PI3K SH3 domain and its D21N mutant revealed that significant chemical shift changes occurred to the aromatic side-chain protons of Trp55 and Tyr14 upon the D21N mutation. All these aromatic residues are implicated in ligand recognition. In addition, the NMR analysis showed that the backbone conformations of Lys15-Asp23, Gly54-Trp55, Asn57-Gly58, and Gly67-Pro70 were affected by the D21N mutation. Furthermore, the (15)N[(1)H] nuclear Overhauser effect values of Tyr14, Glu19, and Glu20 were remarkably changed by the mutation. These results show that the D21N mutation causes structural deformation of more than half of the ligand binding cleft of the domain and provide evidence that Asp21 plays an important role in forming a well-ordered ligand binding cleft in cooperation with the RT loop (Lys15-Glu20).  相似文献   

15.
C Z Chen  R Shapiro 《Biochemistry》1999,38(29):9273-9285
Previous single-site mutagenesis studies on the complexes of ribonuclease inhibitor (RI) with angiogenin (Ang) and RNase A suggested that in both cases a substantial fraction of the binding energy is concentrated within one small part of the crystallographically observed interface, involving RI residues 434-438. Such energetic "hot spots" are common in protein-protein complexes, but their physical meaning is generally unclear. Here we have investigated this question by examining the detailed interactions within the RI.ligand hot spots and the extent to which they function independently. The effects of Phe versus Ala substitutions show that the key residue Tyr434 interacts with both ligands primarily through its phenyl ring; for Tyr437, the OH group forms the important contacts with RNase A, whereas the phenyl group interacts with Ang. Kinetic characterization of complexes containing multiple substitutions reveals striking, but distinctive, cooperativity in the interactions of RI with the two ligands. The losses in binding energy for the RNase complex associated with replacements of Tyr434 and Asp435, and Tyr434 and Tyr437, are markedly less than additive (i.e., by 2.4 and 1.3 kcal/mol, respectively). In contrast, the energetic effects of the 434 and 435, and 434 and 437, substitution pairs on binding of Ang are fully additive and 2.5 kcal/mol beyond additive, respectively. Superadditivities (0.9-2.4 kcal/mol) are also observed for several multisite replacements involving these inhibitor residues and two Ang residues, Arg5 and Lys40, from this part of the interface. Consequently, the decreases in binding energy for some triple-variant complexes are as large as 8.5-10.1 kcal/mol (compared to a total DeltaG of -21.0 kcal/mol for the wild-type complex). Potential explanations for these functional couplings, many of which occur over distances of >13 A and are not mediated by direct or triangulated contacts, are proposed. These findings show that the basis for the generation of hot spots can be complex, and that these sites can assume significantly more (as with Ang) or less (as with RNase) importance than indicated from the effects of single-site mutations.  相似文献   

16.
An activator complex from the venom of Oxyuranus scutellatus scutellatus (taipan venom) is known to rapidly activate prothrombin to thrombin. To determine whether, similar to prothrombinase, taipan venom utilizes proexosite-1 on prothrombin for a productive complex assembly, the activation of proexosite-1 mutants of prethrombin-1 by the partially purified venom was studied. It was discovered that basic residues of this site (Arg(35), Lys(36), Arg(67), Lys(70), Arg(73), Arg(75), and Arg(77)) are also crucial for recognition and rapid activation of the substrate by taipan venom. This was evidenced by the observation that the K(m) and k(cat) values for the activation of the charge reversal mutants of prethrombin-1 (in particular K36E, R67E, and K70E) were markedly impaired. Competitive kinetic studies with the Tyr(63)-sulfated hirudin(54-65) peptide revealed that although the peptide inhibits the activation of the wild type zymogen by taipan venom with a K(D) of approximately 2 microm, it is ineffective in inhibiting the activation of mutant zymogens (K(D) > 4-30 microm). Interestingly, an approximately 50-kDa activator, isolated from the taipan venom complex, catalyzed the activation of prothrombin in a factor Va-dependent manner and exhibited identical activation kinetics toward the substrate in the presence of the hirudin peptide. These results suggest that, similar to prothrombinase, proexosite-1 is a cofactor-dependent recognition site for taipan venom.  相似文献   

17.
Toteva MM  Silvaggi NR  Allen KN  Richard JP 《Biochemistry》2011,50(46):10170-10181
D-Xylose isomerase (XI) and triosephosphate isomerase (TIM) catalyze the aldose-ketose isomerization reactions of D-xylose and d-glyceraldehyde 3-phosphate (DGAP), respectively. D-Glyceraldehyde (DGA) is the triose fragment common to the substrates for XI and TIM. The XI-catalyzed isomerization of DGA to give dihydroxyacetone (DHA) in D(2)O was monitored by (1)H nuclear magnetic resonance spectroscopy, and a k(cat)/K(m) of 0.034 M(-1) s(-1) was determined for this isomerization at pD 7.0. This is similar to the k(cat)/K(m) of 0.017 M(-1) s(-1) for the TIM-catalyzed carbon deprotonation reaction of DGA in D(2)O at pD 7.0 [Amyes, T. L., O'Donoghue, A. C., and Richard, J. P. (2001) J. Am. Chem. Soc. 123, 11325-11326]. The much larger activation barrier for XI-catalyzed isomerization of D-xylose (k(cat)/K(m) = 490 M(-1) s(-1)) versus that for the TIM-catalyzed isomerization of DGAP (k(cat)/K(m) = 9.6 × 10(6) M(-1) s(-1)) is due to (i) the barrier to conversion of cyclic d-xylose to the reactive linear sugar (5.4 kcal/mol) being larger than that for conversion of DGAP hydrate to the free aldehyde (1.7 kcal/mol) and (ii) the intrinsic binding energy [Jencks, W. P. (1975) Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219-410] of the terminal ethylene glycol fragment of D-xylose (9.3 kcal/mol) being smaller than that of the phosphodianion group of DGAP (~12 kcal/mol). The XI-catalyzed isomerization of DGA in D(2)O at pD 7.0 gives a 90% yield of [1-(1)H]DHA and a 10% yield of [1-(2)H]DHA, the product of isomerization with incorporation of deuterium from solvent D(2)O. By comparison, the transfer of (3)H from the labeled hexose substrate to solvent is observed only once in every 10(9) turnovers for the XI-catalyzed isomerization of [2-(3)H]glucose in H(2)O [Allen, K. N., Lavie, A., Farber, G. K., Glasfeld, A., Petsko, G. A., and Ringe, D. (1994) Biochemistry 33, 1481-1487]. We propose that truncation of the terminal ethylene glycol fragment of d-xylose to give DGA results in a large decrease in the rate of XI-catalyzed isomerization with hydride transfer compared with that for proton transfer. An ultra-high-resolution (0.97 ?) X-ray crystal structure was determined for the complex obtained by soaking crystals of XI with 50 mM DGA. The triose binds to XI as the unreactive hydrate, but ligand binding induces metal cofactor movement and conformational changes in active site residues similar to those observed for XI·sugar complexes.  相似文献   

18.
A three-dimensional (3D) molecular model of the antigen-combining site of a bovine anti-testosterone monoclonal antibody has been constructed. In the model, the CDRs, and a single heavy chain framework region residue (Trp47), associate to form a hydrophobic cavity large enough to accommodate a single molecule of testosterone. Tyr97 of CDR-H3 lies at the bottom of the cavity with its hydroxyl group exposed to solvent. Using the model and data from binding studies, we predicted that the cavity forms the antibody's paratope and on binding testosterone a hydrogen bond is formed between Tyr97 of CDR-H3 and the hydroxyl group on the D-ring of testosterone. This prediction has subsequently been tested by site-directed mutagenesis. An antibody with phenylalanine in place of tyrosine at position 97 in CDR-H3 has its affinity reduced by approximately 800 fold. The reduction in binding energy associated with the reduced affinity has been calculated to be 3.9 kcal/mol which is within the range (0.5-4.0 kcal/mol) expected for the loss of a single hydrogen bond. The model has been used to suggest ways of increasing the antibody's affinity for testosterone.  相似文献   

19.
A B72.3 Fab/sTn(2) complex was modeled from the known structure of B72.3 Fab and the dimeric Tn-serine cluster (sTn(2)). In the complex model, the side chains of 15 heavy- and light-chain complementarity-determining region (CDR) residues and the main chains of two light-chain CDR residues contact the sTn(2) epitope. Among 15 CDR residues which contact sTn(2) in the model, two heavy-chain residues (Ser95 and Tyr97) and light-chain CDR residue (Tyr96) have been confirmed in a previous study. To test the accuracy of the computational model, further site-directed mutagenesis was performed by alanine scanning on the remaining 12 residues that are predicted in the model to have side-chain interactions with sTn(2). Of these 12 mutants, eight that are all from the heavy-chain (His32Ala, Ala33Leu, Tyr50Ala, Ser52Ala, Asn52Ala, Asp56Ala, Lys58Ala and Tyr96Ala) had significantly reduced sTn(2) affinities, and four consisting of three light-chain mutations (Asn32Ala, Trp92Ala and Thr94Ala) and one heavy-chain mutation (His35Ala) retained wild-type sTn(2) affinity. On the whole, this evidence suggests that the complex model, although not perfect, is correct in many of its features. In a more general vein, these results lend credibility to the computational modeling approach for the study of the molecular basis of antigen-antibody complexes.  相似文献   

20.
Zheng R  Blanchard JS 《Biochemistry》2000,39(51):16244-16251
Ketopantoate reductase (EC 1.1.1.169) catalyzes the NADPH-dependent reduction of alpha-ketopantoate to D-(-)-pantoate in the biosynthesis of pantothenate. The pH dependence of V and V/K for the E. coli enzyme suggests the involvement of a general acid/base in the catalytic mechanism. To identify residues involved in catalysis and substrate binding, we mutated the following six strictly conserved residues to Ala: Lys72, Lys176, Glu210, Glu240, Asp248, and Glu256. Of these, the K176A and E256A mutant enzymes showed 233- and 42-fold decreases in V(max), and 336- and 63-fold increases in the K(m) value of ketopantoate, respectively, while the other mutants exhibited WT kinetic properties. The V(max) for the K176A and E256A mutant enzymes was markedly increased, up to 25% and 75% of the wild-type level, by exogenously added primary amines and formate, respectively. The rescue efficiencies for the K176A and E256A mutant enzymes were dependent on the molecular volume of rescue agents, as anticipated for a finite active site volume. The protonated form of the amine is responsible for recovery of activity, suggesting that Lys176 functions as a general acid in catalysis of ketopantoate reduction. The rescue efficiencies for the K176A mutant by primary amines were independent of the pK(a) value of the rescue agents (Bronsted coefficient, alpha = -0.004 +/-0.008). Insensitivity to acid strength suggests that the chemical reaction is not rate-limiting, consistent with (a) the catalytic efficiency of the wild-type enzyme (k(cat)/K(m) = 2x10(6) M(-1) s(-1) and (b) the small primary deuterium kinetic isotope effects, (D)V = 1.3 and (D)V/K = 1.5, observed for the wild-type enzyme. Larger primary deuterium isotope effects on V and V/K were observed for the K176A mutant ((D)V = 3.0, (D)V/K = 3.7) but decreased nearly to WT values as the concentration of ethylamine was increased. The nearly WT activity of the E256A mutant in the presence of formate argues for an important role for this residue in substrate binding. The double mutant (K176A/E256A) has no detectable ketopantoate reductase activity. These results indicate that Lys176 and Glu256 of the E. coli ketopantoate reductase are active site residues, and we propose specific roles for each in binding ketopantoate and catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号