首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malted barley is a major raw material of beer, as well as distilled spirits and several food products. The production of malt (malting) exploits the biochemical reactions of a natural process, grain germination. In addition to germinating grain, the malting process includes another metabolically active component: a diverse microbial community that includes various types of bacteria and fungi. Therefore, malting can be considered as a complex ecosystem involving two metabolically active groups. Yeasts and yeast-like fungi are an important part of this ecosystem, but previously the significance of yeasts in malting has been largely underestimated. Characterization and identification of yeasts in industrial processes revealed 25 ascomycetous yeasts belonging to 10 genera, and 18 basidiomycetous yeasts belonging to 7 genera. In addition, two ascomycetous yeast-like fungi belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Several ascomycetous yeast strains showed strong antagonistic activity against field and storage moulds, Wickerhamomyces anomalus (synonym Pichia anomala) being the most effective species. Malting studies revealed that W. anomalus VTT C-04565 effectively restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. In order to broaden the antimicrobial spectrum and to improve malt brewhouse performance, W. anomalus could be combined with other starter cultures such as Lactobacillus plantarum. Well-characterized microbial mixtures consisting of barley and malt-derived microbes open up several possibilities to improve malt properties and to ensure the safety of the malting process.  相似文献   

2.
Rapid screening of the tolerance of yeasts to zinc (II) and chromium (III) was performed by an agar diffusion test. A rapid and reliable procedure for the determination of metal ion concentration gradients on agar plates was developed. Different species of yeasts from the following genera were investigated: Arthroascus, Bulera, Dekkera, Debaryomyces, Dipodascopsis, Eremothecium, Candida, Hansenula, Kluyveromyces, Hormoacus, Geotrichum, Lipomyces, Pachysolen, Pichia, Saccharomyces, Schizosaccharomyces, Schizoblastosporion, Schwan-niomyces, Sporobolomyces, Yarrowia, Torulaspora, Zygosaccharomyces and Williopsis. The experimental conditions were defined as a constant volume of malt agar 32 cm3, and a temperature of 29C. After periods of 24, 47 and 72 h, the concentration intervals of growth inhibition were determined, and the yeasts investigated were grouped in different classes according to their tolerance to Zn (II) and Cr (III). Yeasts were found to be tolerant to significantly higher zinc (II) concentrations in the malt agar medium (5.9 mM to 20 mM) in comparison to chromium (III) (1.5 mM to 6.9 mM). Yeasts showed inter- and intra-generic differences in zinc (II) and chromium (III) tolerance.  相似文献   

3.
4.
Yeasts exhibit various mechanisms for the inheritance of their mitochondrial genomes. Differences among these mechanisms are based on variations within nuclear as well as mitochondrial genetic elements. Here we report diagnostic differences in the presence of biologically active mitochondrial intergenic sequences, ori-reptra, among related yeasts in the genera Saccharomyces, Arxiozyma, Debaryomyces, Kluyveromyces, Pachytichospora, Torulaspora, and Zygosaccharomyces. A molecular probe containing ori-rep-tra can be employed specifically for the differentiation and identification of isolates belonging to the species complex Saccharomyces sensu stricto.  相似文献   

5.
The increasing diversity of opportunistic fungi causing serious invasive fungal infections (IFI) has been documented. Accurate identification (ID) is important in guiding therapy, determining prognosis for IFIs and in epidemiological surveys. We assessed the utility of PCR-based methods for the ID of yeasts and moulds that either were uncommon, failed conventional ID, or represented unusual biochemical or phenotypic profiles of common species. Among 1,790 viable fungal clinical isolates received during the SENTRY Program in 2010, 322 strains from 40 study sites had ID confirmed by molecular methods. Isolates were previously identified in participant institutions. Yeasts that were not confirmed by morphology on CHROMagar, growth at 45?°C (Candida albicans/dubliniensis), or assimilation of trehalose (C. glabrata) as well as non-Candida yeasts and all moulds were amplified and sequenced using primers amplifying one or more of the following genes: ITS, 28S, β-tubulin (Aspergillus spp.), TEF (Fusarium spp.), IGS (Trichosporon spp.). The isolates selected for molecular ID included 149 isolates of Candida species, 77 of Aspergillus species, 73 non-Candida yeasts, and 23 other moulds (a total of 41 different species). Overall, the ID determined by the submitting site was confirmed for 189 isolates (58.7?%): Aspergillus spp. (64.1?% correct); Candida spp. (60.1?% correct); non-Candida yeasts (58.9?% correct); non-Aspergillus moulds (30.4?% correct). Species with high levels of concordance between conventional and molecular ID included A. fumigatus (95.0 %), C. lusitaniae (100?%), C. dubliniensis (92.3?%), C. kefyr (100?%), and C. neoformans (90.2?%). Only 50.0?% of isolates of C. albicans and 59.1?% of C. glabrata selected due to unusual phenotypic or biochemical features were found to be correctly identified by the submitting site. Molecular methods for the identification of fungal pathogens are an important adjunct to the conventional identification of many less common clinically relevant yeasts and moulds including species of Candida with unusual or erroneous phenotypic or biochemical profiles. Molecular confirmation of fungal identification is essential in epidemiological surveys such as SENTRY.  相似文献   

6.
云南程海湖酵母菌多样性及应用   总被引:1,自引:0,他引:1  
【目的】针对云南丽江永胜县境内程海湖环境的特殊性,研究高原湖泊环境中酵母菌的多样性,初步探索程海湖环境中酵母菌的利用价值。【方法】对程海湖的湖水和其周边土壤样品中的酵母菌进行分离;应用26S rDNA的D1/D2区域序列分析,并结合形态及生理生化指标对分离获得的酵母菌进行鉴定;采用筛选培养基对已鉴定酵母菌进行产酶定性实验,分析高原湖泊中酵母菌的多样性及可应用性。【结果】分离得到酵母菌64株,对其中63株进行鉴定,归属于9个属22个种(包括4个疑似新种或新变种);地霉属Geotrichum和隐球酵母属Cryptococcus是2种环境中的共有属;在产酶活性筛选中发现有9株产胞外酶活性的菌株,其中YM24373既产蛋白酶又可产淀粉酶。【结论】研究结果显示程海湖中酵母菌组成具有较为丰富的多样性,其应用价值值得进一步研究。  相似文献   

7.
Analysis of the literature and GenBank data showed that the genus Ogataea is heterogeneous and includes at least five non-described genera. Comprehensive phylogenetic analysis of the present genus Ogataea may be conducted only based on multigene analysis of all the known species. Possibilities of molecular species identification in biogeographical and ecological studies of yeasts are discussed.  相似文献   

8.
Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.  相似文献   

9.
Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417-432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora.  相似文献   

10.
Growth of yeasts on D-xylulose 1   总被引:3,自引:0,他引:3  
Nine of eleven yeasts of different species or genera grew in the presence of air on the intermediate of D-xylose catabolism, D-xylulose (D-threo-pentulose). Growth on this substrate was efficient as judged by the optical density in stationary phase being generally similar to that after growth on glucose. Yeasts which grew on D-xylose also did so on D-xylulose, but among those which grew are included several which utilise neither D-xylose nor xylitol: Saccharomyces cerevisiae, Saccharomyces carlsbergensis, and Schizosaccharomyces pombe. Since catabolism of a sugar generally requires an initial phosphorylation step, growth of these strains suggests that they contain an enzyme which can function as a D-xylulose kinase. The D-xylulose-5-phosphate formed thereby is considered to enter the pentose-phosphate pathway. Glucose-grown inocula of S. carlsbergensis and Schizosaccharomyces pombe, and of several other yeasts, began to grow logarithmically when placed on D-xylulose with no apparent delay, or one which was minimal, suggesting that the D-xylulose kinase was already present in such cells, or was rapidly induced. Petites of S. cerevisiae did not grow on D-xylulose indicating that, in this species, mitochondria are involved in its utilisation.  相似文献   

11.
Spoilage yeasts.     
Yeasts are best known for their beneficial contributions to society, and the literature abounds with discussions of their role in the fermentation of alcoholic beverages, bread, and other products. Yeasts also cause spoilage, but, with a few exceptions, this unwanted activity often goes unrecognized and underestimated as a major problem in the food and beverage industries. In some cases, there is only a fine line between what is perceived as either a spoilage or beneficial activity. This review examines the occurrence and growth of yeasts in foods and beverages with respect to their spoilage activities, the biochemistry of this spoilage, and technologies for the enumeration and identification of spoilage yeasts.  相似文献   

12.
Wu Y  Du PC  Li WG  Lu JX 《Mycopathologia》2012,174(3):203-214
Feral pigeons are known as reservoirs of pathogenic yeasts that cause opportunistic infections in human. In the outskirts of Beijing, China, pigeons are more frequently raised at homes than are encountered in public areas. Many studies have focused on the presence of pathogenic yeasts in the excreta (fresh or withered) of a variety kinds of birds, pigeon crop and cloacae. One hundred and forty-three samples of fresh droppings were collected from three suburban pigeon-raising homes in an area of northern Beijing, China. The internal transcribed sequences (ITS) of all strains (except for 8 strains of Rhodotorula sp. ) were sequenced and compared with those of the databases of the National Center for Biotechnology Information website ( http://www.ncbi.nlm.nih.gov ) using the Basic Local Alignment Search Tool (BLAST). Yeasts representing 8 genera, Cryptococcus, Filobasidium, Rhodotorula, Candida, Debaryomyces, Saccaromyces, Trichosporon and Sporidiobolus, were identified from 120 isolates. Cryptococcus was the most prolific genera represented by eight species. The populations of yeast species isolated from fresh pigeon droppings were different among homes. Although it is well established that Cryptococcus neoformans exists mainly in old pigeon guano, several C. neoformans strains were still isolated from fresh pigeon excreta, providing a clue that live cryptococcal cells could move through the gastrointestinal tract of the pigeons. Eight genera identified from fresh droppings of domestic pigeons further confirm that pigeons serve as reservoirs, carriers and even spreaders of Cryptococcus species and other medically significant yeasts. The proportion of pathogenic yeasts in all isolates is more than 90 %.  相似文献   

13.
The inner microflora of blood-sucking mosquitoes genus Aedes inhabiting different biotops of aspen-birch woods of the Tomsc Priob region has been investigated. 120 strains of yeasts genera Pichia, Hansenula, Saccharomyces, Torulaspora, Metschnicowia, Rhodotorula, Cryptococcus, Candida and Aueobasidium have been isolated, the most number of species belong to the genus Pichia. Yeasts P. guilliermondii, A. pullulans and M. pulcherrima have been found during all periods of insects collection. The most number of yeasts species has been found in mosquitos of mass species--A. diantaeus, A. excrucians. A. punctor and A. communis. It is supposed that isolated yeasts are collected by mosquitoes off natural substrates in the course of their development.  相似文献   

14.
Yeasts in an industrial malting ecosystem   总被引:3,自引:0,他引:3  
The malting ecosystem consists of two components: the germinating cereal grains and the complex microbial community. Yeasts and yeast-like fungi are an important part of this ecosystem, but the composition and the effects of this microbial group have been largely unknown. In this study we surveyed the development of yeasts and yeast-like fungi in four industrial scale malting processes. A total of 136 malting process samples were collected and examined for the presence of yeasts growing at 15, 25 and 37°C. More than 700 colonies were isolated and characterized. The isolates were discriminated by PCR-fingerprinting with microsatellite primer (M13). Yeasts representing different fingerprint types were identified by sequence analysis of the D1/D2 domain of the 26S rRNA gene. Furthermore, identified yeasts were screened for the production of α-amylase, β-glucanase, cellulase and xylanase. A numerous and diverse yeast community consisting of both ascomycetous (25) and basidiomycetous (18) species was detected in the various stages of the malting process. The most frequently isolated ascomycetous yeasts belonged to the genera Candida, Clavispora, Galactomyces, Hanseniaspora, Issatchenkia, Pichia, Saccharomyces and Williopsis and the basidiomycetous yeasts to Bulleromyces, Filobasidium, Cryptococcus, Rhodotorula, Sporobolomyces and Trichosporon. In addition, two ascomycetous yeast-like fungi (black yeasts) belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Knowledge of the microbial diversity provides a basis for microflora management and understanding of the role of microbes in the cereal germination process.  相似文献   

15.
张颖  魏江春 《菌物学报》2023,42(2):442-455
生物系统学亦即演化生物学或生物分类学,其目的在于为人类可持续发展中的生物资源研发提供生物信息。以单基因和多基因片段为基础的系统树分析难以获得同一祖先后代的单系类群。同源生物系统学是以共同祖先遗传的基因型和表型为基础进行的分析,是探明单系类群的最佳途径。同源性分析结果表明,石耳亚纲具有一条同源序列S及6种彼此相近的子囊顶器结构,其中包括石耳目以及未定位的5个属。石耳目包括一条同源序列O及石耳型子囊顶器结构。石耳科具有一条同源序列F及脐叶型地衣体。其中疱脐衣属具有一条同源序列L及疱状脐叶体与单孢子囊,石耳属具有一条同源序列U与非疱状脐叶体和八孢子囊。边缘种宾州疱脐衣除具有疱脐衣属同源序列L及疱状脐叶体内含单孢子囊以外,还兼具石耳属同源序列U以及疱狀脐叶体下表偶见气生根;而边缘种卡罗里石耳除具有石耳属同源序列U及非疱状脐叶体内含八孢子囊以外,还兼具疱脐衣属同源序列L以及疱脐衣属特有的砖壁型子囊孢子。  相似文献   

16.
Approximately 500 species of ascomycetous yeasts, including members of Candida and other anamorphic genera, were analyzed for extent of divergence in the variable D1/D2 domain of large subunit (26S) ribosomal DNA. Divergence in this domain is generally sufficient to resolve individual species, resulting in the prediction that 55 currently recognized taxa are synonyms of earlier described species. Phylogenetic relationships among the ascomycetous yeasts were analyzed from D1/D2 sequence divergence. For comparison, the phylogeny of selected members of the Saccharomyces clade was determined from 18S rDNA sequences. Species relationships were highly concordant between the D1/D2 and 18S trees when branches were statistically well supported.  相似文献   

17.
AIMS: To test the possibility that wines available in the marketplace may contain culturable yeasts and to evaluate the 5.8S-ITS rDNA sequence analysis as adequate means for the identification of isolates. METHODS AND RESULTS: As a case study, typical Greek wines were surveyed. Sequence analysis of the 5.8S-ITS rDNA was tested for its robustness in species or strain identification. Sixteen isolates could be assigned into the species Brettanomyces bruxellensis, Saccharomyces cerevisiae and Rhodotorula pinicola, whereas four isolates could not be safely identified. B. bruxellensis was the dominant species present in house wines, while non-Saccharomyces sp. were viable in aged wines of high alcohol content. CONCLUSIONS: Yeast population depends on postfermentation procedures or storage conditions. Although 5.8S-ITS rDNA sequence analysis is generally a rapid method to identify wine yeast isolates at the species level, or even below that, it may not be sufficient for some genera. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report to show that commercial wines may possess diverse and potentially harmful yeast populations. The knowledge of yeasts able to reside in this niche environment is essential towards integrated quality assurance programmes. For selected species, the 5.8S-ITS rDNA sequence analysis is a rapid and accurate means.  相似文献   

18.
A two-step protocol was used for the identification of 52 yeasts isolated from bark of cork oak at initial stages of the manufacturing process of cork stoppers. The first step in the identification was the separation of the isolates into groups by their physiological properties and RFLPs of the ITS-5.8S rRNA gene. The second step was the sequencing of the D1/D2 domains of the 26S rRNA gene of selected isolates representing the different groups. The results revealed a predominance of basidiomycetous yeasts (11 species), while only two species represented the ascomycetous yeasts. Among the basidiomycetous yeasts, members representing the species Rhodosporidium kratochvilovae and Rhodotorula nothofagi, that have been previously isolated from plant material, were the most abundant. Yeasts pertaining to the species Debaryomyces hansenii var. fabryii, Rhodotorula mucilaginosa and Trichosporon mucoides were isolated in small numbers.  相似文献   

19.
Selenium tolerance of yeasts widely varies: the growth of some yeasts can be inhibited by a selenium concentration as low as 10(-4) M, whereas others can grow in the presence of 10(-1) M selenium. Homogeneous yeast taxa are characterized by a certain level of selenium tolerance, and heterogeneous taxa show a variable level of tolerance to selenium. In general, ascomycetous yeasts are more tolerant to selenium than basidiomycetous yeasts. Among the ascomycetous yeasts, the genera Dekkera and Schizosaccharomyces exhibited the lowest and the species Candida maltosa, Hanseniaspora valbyensis, Kluyveromyces marxianus, and Yarrowia lipolytica the highest tolerance to selenium. Among the basidiomycetous yeasts, the genera Bullera, Cryptococcus, and Holtermannia showed the lowest and the species Cryptococcus curvatus, Cr. humicola, and Trichosporon spp. the highest tolerance to selenium. The selenium tolerance of yeasts depends on the composition of the growth medium, in particular, on the presence of sulfate, sulfur-containing amino acids, and glutamine in the medium.  相似文献   

20.
Microflora of partially processed lettuce   总被引:3,自引:0,他引:3  
Bacteria, yeasts, and molds isolated from partially processed iceberg lettuce were taxonomically classified. The majority of bacterial isolates were gram-negative rods. Pseudomonas, Erwinia, and Serratia species were commonly found. Yeasts most frequently isolated from lettuce included members of the genera Candida, Cryptococcus, Pichia, Torulaspora, and Trichosporon. Comparatively few molds were isolated; members of the genera Rhizopus, Cladosporium, Phoma, Aspergillus, and Penicillium were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号