首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein neurotoxin II from the venom of the scorpion Androctonusaustralis Hector was labeled with 125I by the lactoperoxidase method to a specific radioactivity of about 100 μCi/μg without loss of biological activity. The labeled neurotoxin binds specifically to a single class of non intereacting binding sites of high affinity (KD = 0.3 – 0.6 nM) and low capacity (4000 – 8000 sites/cell) to electrically excitable neuroblastoma cells. Relation of these sites to the action potential Na+ channel is derived from identical concentration dependence of scorpion toxin binding and increase in duration and amplitude of action potential. The protein neurotoxin II from the sea anemone Anemona sulcata also affects the closing of the action potential Na+ ionophore in nerve axons. The unlabelled sea anemone toxin modifies 125I-labeled scorpion toxin II binding to neuroblastoma cells by increasing the apparent KD for labeled scorpion toxin without modification of the number of binding sites. It is concluded that both Androctonus scorpion toxin II and Anemona sea anemone toxin II interact competitively with a regulatory component of the action potential Na+ channel.  相似文献   

2.
The insecticidal toxin of Bacillusthuringiensis subsp. kurstaki was isolated from parasporal crystals. The toxin, which is stable for several months, is a glycoprotein with an apparent molecular weight of 68,000 that is generated upon solubilization and activation of a higher molecular weight protoxin (MWapp = 1.3 × 105) at alkaline pH. The toxin was purified by gel filtation and anion exchange chromatography and its molecular weight was established by gel filtration chromatography and SDS polyacrylamide gel electrophoresis.  相似文献   

3.
Purified enterotoxin (20–200 ng/ml) of Clostridiumperfringens rapidly induced bled and balloon formation on HeLa and Vero cells in the presence, but not the absence, of Ca2+. The action of the toxin involved two, sequential, temperature-dependent steps: The first was Ca2+-independent and included binding of toxin and the bound toxin after 30–60 sec could no longer be removed by washing. The second step was Ca2+-dependent and eventually led to bled and balloon formation. On adding Ca2+ to cells pretreated with toxin in Ca2+-free medium, bled and balloon formation started immediately. The ionophore A23187 mimicked the action of toxin. The effects of sucrose (0.2 M), trypsin-treatment of the cells and various pretreatments of the toxin on the action of enterotoxin were studied.  相似文献   

4.
The diarrhea observed in patients which cholera is known to be related to secretion of water and electrolytes into the intestinal lumen. However, the exact mechanisms involved in these secretory processes have remained unclear. Although it is clear that purified toxin acts on epithelial cell metabolism, its activity on Na+ transport across intestinal mucosa is equivocal: reported either to prevent net Na+ absorption or to cause net secretion of Na+ from serosa to mucosa. Since total transmural Na+ fluxes across “leaky” epithelia involve very significant movement via a paracellular shunt pathway, we studied the effects of cholera toxin on the cellular and paracellular pathways of Na+ movement. Unidirectional Na+ fluxes were examined as functions of applied potential in control tissues and in tissues from the same animal treated with purified cholera toxin. Treatment of rabbit ileum in vitro with toxin stimulated the cellular component of serosa-to-mucosa Na+ flux (from 2.41 ± 0.49 μequiv./h per cm2 under control conditions to 4.71 ± 0.43 μequiv./h per cm2 after treatment with toxin, P < 0.01). The effect of cholera toxin on Na+ movement through the cells from mucosa to serosa appeared to be insignificant. Finally, a marked decrease in the Na+ permeability (P < 0.01) and no detectable significant changes in transference number for Na+ of the paracellular shunt pathway were observed following treatment with cholera toxin. These results provide direct evidence for the hypothesis that purified cholera toxin stimulates active sodium secretion but has minimal effect on sodium absorption.  相似文献   

5.
Synthesis of diphtheria toxin in E. coli cell-free lysate   总被引:7,自引:0,他引:7  
An E. coli cell-free lysate was used to translate C. diphtheriae RNA from nontoxinogenic C7(?), C7 infected with β tox+ corynebacteriophage, and C. diphtheriae strain PW8. De novo synthesis of toxin was detected by immune precipitation with antitoxin, ADP-ribosylation of mammalian elongation factor 2 and rabbit skin test. The results indicated that toxin is produced in the E. coli protein synthesizing system primed with RNA from cells infected with tox+ bacteriophage and is absent in systems primed with RNA from C7(?) cells.  相似文献   

6.
125I-Labeled Dolichos biflorus lectin and cholera toxin were used as probes for identification of Forssman- and GM1-type receptor sites on guinea pig tumor (104C1) cell surfaces. Increased binding of 125I-labeled lectin and toxin to 104C1 cell surfaces was observed after the cells were treated with exogenous Forssman glycosphingolipid and GM1 ganglioside, respectively. Biosynthesis in vitro of these two glycosphingolipids from their precursor molecules was established using a membrane preparation isolated from confluent cultures of guinea pig tumor 104C1 cells.  相似文献   

7.
The binding of the crustacean selective protein neurotoxin, toxin B-IV, from the nemertine Cerebratulus lacteus to lobster axonal vesicles has been studied. A highly radioactive, pharmacologically active derivative of toxin B-IV has been prepared by reaction with Bolton-Hunter reagent. Saturation binding and competition of 125I-labeled toxin B-IV by native toxin B-IV have shown specific binding of 125I-labeled toxin B-IV to a single class of binding sites with a dissociation constant of 5–20 nM and a binding site capacity, corrected for vesicle sidedness, of 6–9 pmol per mg membrane protein. This compares to a value of 3.8 pmol [3H]saxitoxin bound per mg in the same tissue. Analysis of the kinetics of toxin B-IV association (k+1=7.3·105M?1·s?1) and dissociation (k? 1=2·10?3s?1) shows a nearly identical Kd of about 3 nM. There is no competition of toxin B-IV binding by purified toxin from Leiurus quinquestriatus venom while Centruroides sculpturatus Ewing toxin I appears to cause a small enhancement of toxin B-IV binding.  相似文献   

8.
Purified enterotoxin from the bacterium Clostridium perfringens rapidly decreased the hormonally induced uptake of α-aminoisobutyric acid in primary cultures of adult rat hepatocytes. At 5 min after toxin addition the decrease in α-aminoisobutyric acid uptake appeared not due to increased passive permeation (estimated with l-glucose) or to increased α-aminoisobutyric acid efflux. When short uptake assay times were employed a depression of α-aminoisobutyric acid influx was observed in toxin-treated hepatocytes. The depression of α-aminoisobutyric acid influx was correlated with a rapid increase in intracellular Na+ (estimated using 22Na+) apparently effected by membrane damage. In contrast, the uptake of cycloleucine in the presence of unlabeled α-aminoisobutyric acid (assay for Na+-independent amino acid uptake) by hepatocytes treated with toxin for 5 min was decreased to only a small extent or not at all depending upon experimental design. At later times, C. perfringens enterotoxin increased the exodus of l-glucose, 3-O-methylglucose and α-aminoisobutyric acid from pre-loaded cells indicating that the toxin effects progressive membrane damage. When enterotoxin was removed by repeated washing after 5–20 min the decay of α-aminoisobutyric acid uptake ceased and appeared to undergo recovery towards the hormonally induced control level. The degree of recovery of α-aminoisobutyric acid uptake was inverse to the length of time of exposure to toxin. Adding at 10 min specific rabbit antiserum against C. perfringens enterotoxin without medium change also reversed the effect of toxin on increased intracellular 22Na+, and on the exodus (from preloaded cells) of α-aminoisobutyric acid, L-glucose, and 3-O-methylglucose.  相似文献   

9.
The eyespot disease of sugarcane is caused by Helminthosporium sacchari. Helminthosporoside, a host-specific toxin produced by H. sacchari, is essential for the pathogenicity of this fungus. The presence of the helminthosporoside-binding protein in sugarcane likewise appears to be essential for susceptibility to the toxin. The results of this report show that leaf cell protoplasts of tobacco and toxin resistant sugarcane effectively adsorbed the toxin-binding protein derived from membranes of susceptible sugarcane. These protoplasts then became susceptible to the helminthosporoside. They also functioned to takeup raffinose, a trisaccharide structurally related to the toxin. Tobacco protoplasts were treated with [14C] - binding protein, ruptured, and fractionated on a sucrose density gradient column. A peak of radioactivity was associated with the enriched plasma membrane fraction. The results support the hypothesis that the binding protein is the primary recognition site governing susceptibility of sugarcane to helminthosporoside.  相似文献   

10.
Brief exposure to the protein neurotoxin, β-bungarotoxin, is known to disrupt neuromuscular transmission irreversibly by blocking the release of transmitter from the nerve terminal. This neurotoxin also has a phospholipase A2 activity, although phospholipases in general are not very toxic. To determine if the toxicity of this molecule might result from specific binding to neural tissue, we have looked for high affinity, saturable binding using 125I-labeled toxin. At low membrane protein concentration 125I-labeled toxin binding was directly proportional to the amount of membrane; at fixed membrane concentration 125I-labeled toxin showed saturable binding. It was unlikely that iodination markedly changed the toxin's properties since the iodinated toxin had a comparable binding affinity to that of native toxin as judged by competition experiments. Comparison of toxin binding to brain, liver and red blood cell membranes showed that all had high affinity binding sites with dissociation constants between one and two nanomolar. This is comparable to the concentrations previously shown to inhibit mitochondrial function. However, the density of these sites showed marked variation such that the density of sites was 13.0 pmol/mg protein for a brain membrane preparation, 2.4 pmol/mg for liver and 0.25 pmol/mg for red blood cell membranes.In earlier work we had shown that calcium uptake by brain mitochondria is inhibited at much lower toxin concentrations than is liver mitochondrial uptake. Both liver and brain mitochondria bind toxin specifically, but the density of 125I-labeled toxin binding sites on brain mitochondrial prepartions (3.3 ± 0.3 pmol/mg) exceeded by a factor of ten the density on liver mitochondrial preparations (0.3 ± 0.05 pmol/mg). It is also shown that the labeled toxin does not cross synaptosomal membranes, suggesting that mitochondria may not be the site of action of the toxin in vivo. We conclude the β-bungarotoxin is an enzyme which can bind specifically with high affinity to cell membranes.  相似文献   

11.
This paper describes the interaction of apamin, the bee venom neurotoxin, with its receptor in the guinea pig colon. The pharmacological activity of the toxin was assayed by measuring its contracting effect on guinea pig colon preparations that had been previously relaxed by neurotensin. The IC50 value of apamin in this in vitro bioassay is 7 nM. These pharmacological data are compared to the binding properties of apamin to smooth muscle membranes prepared from guinea pig colon. The highly radiolabeled monoiododerivative of apamin binds to its colon receptor with a dissociation constant Kd1 = 36 pM. The maximal binding capacity of colonic membranes is 30dfmol/mg of protein. The dissociation constant of the unmodified toxin is 23 pM. The difference between the toxin concentrations that produce half-maximal effects in the binding and pharmacological studies arises from the different experimental conditions used for the two assays.  相似文献   

12.
A neurotoxin from the venom of the scorpion, Androctonus australis Hector, affects the closing of the Na+ channel and the opening of the K+ channel in giant axons of crayfish and lobster nerves. It blocks both Na+ and K+ conductances in Sepia giant axons. Dose-response curves are markedly cooperative with all types of axons. Apparent dissociation constants for the receptor-toxin complexes are 0.25 μM, 0.7 μM and 2–4 μM for the crayfish, lobster and Sepia axons, respectively. This toxin will be probably a useful tool for biochemical investigation of Na+ and K+ channels.  相似文献   

13.
The neurotoxin crotamine, which is a basic low molecular weight protein, was isolated, in the form of its hydrochloride, from a South Brazilian rattlesnake (Crotalus durissus crotaminicus, Crotalus durissus terrificus) venom.Disc electrophoresis, carried out in 7% acrylamide by the method of Reisfeld, at pH 4.5, showed a single band for the purified toxin.The toxin showed the following amino acid composition: Asx2, Ser3, Glx2, Pro3, Gly5, Cys5, Met1, Ileu1, Leu1, Tyr1, Phe2, Trp2, Lys9, His2, and Arg2, which corresponds to a minimum molecular weight of 4760. This assignment of minimum molecular weight is supported by the recovery of 1.0 mole of N-terminal Tyr5800 g of crotamine by the Sanger dinitrophenol (DNP) method, 1.0 mole of Tyr4880 g by the Udenfriend method, and by uv analysis, which gave a value of 4820. The odd number of half-cystine residues (54760g) cannot be explained on the basis of available analytical data.Tyrosine was the only amino-terminal residue detectable by the Sanger DNP method. Glycine was identified as the only carboxyl-terminal residue by the hydrazinolysis method of Akabori and by release upon treatment with yeast carboxypeptidase.The H+ electrometric and Cl? complexometric titrations of crotamine hydrochloride showed that about 13 moles of HCl are bound per 4760 g of the free base.  相似文献   

14.
The saxitoxin-binding component of the excitable membrane sodium channel exhibits glycoprotein characteristics as evidenced by its specific interaction with various agarose-immobilized lectins. The detergent-solubilized saxitoxin-binding component interacts quantitatively with immobilized wheat germ agglutinin and concanavalin A and fractionally with immobilized Lens culinaris hemagglutinin and Ricinus communis agglutinin. These lectins preferentially bind N-acetylglucosamine and sialic acid (wheat germ agglutinin), mannose (concanavalin A and Lens cunilaris and galactose (Ricinus communis). Removal of terminal sialic acid residues by neuraminidase markedly decreases binding to immobilized wheat germ agglutinin but uncovers sites capable of interacting with lectins specific for galactose and N-acetylgalactosamine. β-N-acetylglucosaminidase, an exoglycosidase has no effect on the binding of the channel protein to wheat germ agglutinin. Similarly, phospholipase C has no effect on binding of the solubilized toxin binding component to this lectin. Neither wheat germ agglutinin nor concanavalin A free in solution alters the number of toxin binding sites or their affinity for toxin. The sodium channel saxitoxin-binding component appears to be a glycoprotein containing terminal sialic acid residues and internal mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine residues. The toxin binding site is spatially separated from the binding sites for the lectins studied. The effect of these sugar moieties must be considered when evaluating the biophysical parameters of the sodium channel.  相似文献   

15.
The results of kinetic studies of the inactivation of bean ornithine carbamoyltransferase by phaseotoxin, the extracellular toxin of Pseudomonasphaseolicola, are consistant with the notion that the toxin is an active site directed irreversible inhibitor of the enzyme. Phosphate, an end product of the enzymatic reaction, protects the enzyme from inactivation by the toxin. It is proposed that phaseotoxin is one of a few naturally occurring affinity labels.  相似文献   

16.
Theophylline increased the time required for botulinum toxin to cause neuromuscular blockade in an isolated phrenic nerve-diaphragm preparation. Theophylline also offered some protection against botulinum toxin in mice, invivo.  相似文献   

17.
Invivo growth of hormone-dependent rat mammary tumors was arrested by daily injections of L-arginine (L-arginine·HCl 50 mg/200g rat s.c.). Arginine + N6,O2′-dibutyryl cyclic adenosine 3′,5′-monophosphate (DBcAMP) acted synergistically to enhance the growth inhibitory effect. Growth arrest by arginine was accompanied by a sharp increase in cellular cAMP content, which was preceded by parallel increases in NAD-dependent ADP-ribosylation of the membrane proteins and NAD-dependent activation of adenylate cyclase. The ADP-ribosylation of the membrane proteins required GTP and was catalyzed similarly by the 105,000 × g supernatant fraction of the tumor and by cholera toxin. These results suggest a specific role for arginine in the cAMP-mediated inhibition of mammary tumors.  相似文献   

18.
Behavioral comparisons of the stereoisomers of tetrahydrocannabinols   总被引:1,自引:0,他引:1  
The potencies of (?)-trans9-THC, (+)-trans9-THC, (+)-cis9-THC, (?)-trans8-THC and (+)-trans8-THC were compared in several different species. (?)-trans9-THC was 100 times more potent than (+)-trans9-THC in depressing schedule-controlled responding in monkeys. The (+)-trans isomers were less effective than their corresponding (?)-trans isomers in the dog static-ataxia test, but potency ratios could not be determined due to a lack of dose-responsiveness of the (+)-trans isomers. However, it appeared that their potency differed by at least ten fold. The potency of (+)-cis9-THC in the dog static-ataxia test was comparable to that of (+)-trans9-THC. The hypothermia in mice produced by the (?) isomers of trans9-THC and trans8-THC were 9.1 and 30.4 times greater than that produced by their respective (+)-isomers. Also, the potency ratio of the (+)- and (?)-trans9-THC was 5.6 as measured by depression of spontaneous activity in mice. The magnitude of the potency ratios of the THC stereo-isomers is dependent upon the species and the pharmacological test used.  相似文献   

19.
The agonist binding affinity of nicotinic acetylcholine receptor (nAChR) from Torpedocalifornica electroplax, as inferred from ability of agonist to inhibit specific curaremimetic neurotoxin binding to nAChR, is sensitive to the duration of exposure to agonist. The concentration of carbachol necessary to prevent one-half of toxin binding over a 30 min incubation with nAChR (K30) is 10 μM when toxin and carbachol are simultaneously added to membrane-bound nAChR, and 3 μM when nAChR are pretreated with carbachol for 30 min prior to the addition of toxin. These alterations in agonist affinity may be mimicked by modification of nAChR thiol groups. Affinity of nAChR for carbachol is decreased following treatment with dithiothreitol (DTT). Dithio-bis-nitrobenzoic acid treatment of DTT-reduced membranes yields K30 values of 5 μM for carbachol, while N-ethylmaleimide treatment of DTT-reduced nAChR produces nAChR with reduced affinity for carbachol, reflected in K30 values of about 400 μM. In the absence of Ca++, K30 values for carbachol binding to native and DTT-reduced nAChR are diminished 3–6 fold. These affinity alterations are not observed with d-tubocurarine (antagonist) binding to nAChR. Thus, Ca++ and the oxidation state of nAChR thiols appear to affect the affinity of nAChR for agonists (but not antagonists), and may therefore be related to agonist-mediated events in receptor activation and/or desensitization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号