首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biochemical mechanism of cytotoxicity, induced by the quinoid compound 2-methyl 1,4-naphthoquinone (menadione), was investigated in hepatocytes freshly isolated from fasted and fed rats. Hepatocytes from fasted rats were significantly more vulnerable to the toxicity of menadione than hepatocytes from fed rats. Menadione (150 microM) induced a 50% loss of viability of cells (LT50) from fasted rats after 55 min of incubation, whereas a LT50 of 80 min was observed after exposure of hepatocytes from fed rats to menadione. Glutathione and NADPH levels were rapidly depleted by menadione metabolism. This depletion was sustained during the incubation period. No significant differences were found in the time course and extent of the menadione-induced glutathione and NADPH depletion in hepatocytes of both nutritional states. Menadione also affected the energy status of the hepatocytes. The ATP content of cells from fasted rats decreased to 50% (AT50) within 18 min of exposure to menadione, whereas a 50% loss of ATP content of hepatocytes from fed rats was reached at 65 min. In contrast to depletion of glutathione and NADPH, the time course and extent of menadione-induced ATP depletion correlated well with the time of onset and rate of cell killing. Our results suggest that menadione metabolism may interfere with both mitochondrial and glycolytic ATP production. Depletion of ATP might be a critical step in menadione-induced cytotoxicity.  相似文献   

2.
Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process.  相似文献   

3.
Oxidative stress studied in intact mammalian cells   总被引:1,自引:0,他引:1  
Exposure of isolated rat hepatocytes to toxic doses of menadione (2-methyl-1,4-naphthoquinone) results in enhanced formation of active oxygen species, depletion of cellular glutathione and protein thiols, and perturbation of intracellular calcium ion homeostasis. An increase in cytosolic Ca2+ concentration, resulting from inhibition of the plasma membrane Ca2+ translocase by menadione metabolism, appears to be critically involved in the development of cytotoxicity.  相似文献   

4.
The role of thiols of the outer and the inner membranes of mitochondria in the regulation of generation of reactive oxygen species (ROS) has been studied. It was found that N-ethylmaleimide (NEM), which penetrates through the mitochondrial membrane and binds thiols to form thioesters, at concentrations from 20 to 250 μM activates the production of superoxide anion and hydrogen peroxide during the oxidation of the substrates of complexes I and II of the respiratory chain. 5′,5′-Dithiobis-(2-nitrobenzoate) (DTNB), which does not penetrate into mitochondria and binds thiols to form disulfides, weakly activates hydrogen peroxide production during the oxidation of NAD-dependent substrates and inhibits the ROS production upon succinate oxidation. DTNB is particularly effective in inhibiting the menadione-induced formation of ROS. The differences in the ROS formation by these reagents are explained by the fact that they influence different thiol-containing proteins and enzymes. As distinct from NEM, which inhibits complex I of the respiratory chain, DTNB has no effect on the respiratory chain of mitochondria but can bind the SH-groups of NADH-quinone oxidoreductase, which is localized in the outer mitochondrial membrane and participates in the redox cycle of menadione. It was also shown that the ability to inhibit the ADP-stimulated respiration, a feature inherent in both reagents, does not significantly contribute to ROS production.  相似文献   

5.
Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them.  相似文献   

6.
Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-XL protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them.  相似文献   

7.
The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2′,7′-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.  相似文献   

8.
The results presented in this paper reveal the existence of three distinct menadione (2-methyl-1,4-naphthoquinone) reductases in mitochondria: NAD(P)H:(quinone-acceptor) oxidoreductase (D,T-diaphorase), NADPH:(quinone-acceptor) oxidoreductase, and NADH:(quinone-acceptor) oxidoreductase. All three enzymes reduce menadione in a two-electron step directly to the hydroquinone form. NADH-ubiquinone oxidoreductase (NADH dehydrogenase) and NAD(P)H azoreductase do not participate significantly in menadione reduction. In mitochondrial extracts, the menadione-induced NAD(P)H oxidation occurs beyond stoichiometric reduction of the quinone and is accompanied by O2 consumption. Benzoquinone is reduced more rapidly than menadione but does not undergo redox cycling. In intact mitochondria, menadione triggers oxidation of intramitochondrial pyridine nucleotides, cyanide-insensitive O2 consumption, and a transient decrease of delta psi. In the presence of intramitochondrial Ca2+, the menadione-induced oxidation of pyridine nucleotides is accompanied by their hydrolysis, and Ca2+ is released from mitochondria. The menadione-induced Ca2+ release leaves mitochondria intact, provided excessive Ca2+ cycling is prevented. In both selenium-deficient and selenium-adequate mitochondria, menadione is equally effective in inducing oxidation of pyridine nucleotides and Ca2+ release. Thus, menadione-induced Ca2+ release is mediated predominantly by enzymatic two-electron reduction of menadione, and not by H2O2 generated by menadione-dependent redox cycling. Our findings argue against D,T-diaphorase being a control device that prevents quinone-dependent oxygen toxicity in mitochondria.  相似文献   

9.
AimsMenadione, a redox-cycling quinone known to cause oxidative stress, binds to reduced glutathione (GSH) to form glutathione S-conjugate. Glutathione S-conjugates efflux is often mediated by multidrug-resistance-associated protein (MRP). We investigated the effect of a transporter inhibitor, MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), on menadione-induced oxidative stress in bovine aortic endothelial cells (BAECs).Main methodsBAECs were treated with menadione and MK571, and cell viability was measured. Modulation of intracellular GSH levels was performed with buthionine sulfoximine and GSH ethyl ester treatments. Intracellular superoxide was estimated by dihydroethidium oxidation using fluorescence microscopy or flow cytometry. Expression of MRP was determined by flow cytometry using phycoerythrin-conjugated anti-MRP monoclonal antibody.Key findingsIntracellular GSH depletion by buthionine sulfoximine promoted the loss of viability of BAECs exposed to menadione. Exogenous GSH, which does not permeate the cell membrane, or GSH ethyl ester protected BAECs against the loss of viability induced by menadione. The results suggest that GSH binds to menadione outside the cells as well as inside. Pretreatment of BAECs with MK571 dramatically increased intracellular levels of superoxide generated from menadione, indicating that menadione may accumulate in the intracellular milieu. Finally, we found that MK571 aggravated menadione-induced toxicity in BAECs and that MRP levels were increased in menadione-treated cells.SignificanceWe conclude that MRP plays a vital role in protecting BAECs against menadione-induced oxidative stress, presumably due to its ability to transport glutathione S-conjugate.  相似文献   

10.
Menadione (2-methyl-1,4-naphthoquinone) was used as a model compound to test the hypothesis that thioether conjugates of quinones can be toxic to tissues associated with their elimination through a mechanism involving oxidative stress. Unlike menadione, the glutathione (2-methyl-3-(glutathion-S-yl)-1,4-naphthoquinone; MGNQ) and N-acetyl-L-cysteine (2-methyl-3-(N-acetylcysteine-S-yl)-1,4-naphthoquinone; M(NAC)NQ) thioether conjugates were not able to arylate protein thiols but were still able to redox cycle with cytochrome c reductase/NADH and rat kidney microsomes and mitochondria. Interestingly, menadione and M(NAC)NQ were equally toxic to isolated rat renal epithelial cells (IREC) while MGNQ was nontoxic. The toxicity of both menadione and M(NAC)NQ was preceded by a rapid depletion of soluble thiols and was associated with a depletion of soluble thiols and was associated with a depletion of protein thiols. Treatment of IREC with the glutathione reductase inhibitor, 1,3-bis(2-chloroethyl)-1-nitrosourea, potentiated the thiol depletion and toxicity observed with menadione and M(NAC)NQ indicating the involvement of oxidative stress in this model of renal cell toxicity. The lack of MGNQ toxicity can be attributed to an intramolecular cyclization reaction which destroys the quinone nucleus and therefore eliminates its ability to redox cycle. These findings have important implications with regard to our understanding of the toxic potential of quinone thioether conjugates and of quinone toxicity in general.  相似文献   

11.
In order to clarify the role of oxidative processes in cytotoxicity we have studied the metabolism and toxicity of 2-methyl-1,4-naphthoquinone (menadione) and its 2,3 dimethyl (DMNQ) and 2,3 diethyl (DENQ) analogs in isolated rat hepatocytes. The two analogs, unlike menadione, cannot alkylate nucleophiles directly and were considerably less toxic than menadione. This decreased toxicity was consistent with the inability of DMNQ and DENQ to alkylate but we also found them to undergo lower rates of redox cycling in hepatocytes and a higher ratio of two electron as opposed to one electron reduction relative to menadione. Thus, facile analysis of the respective roles of alkylation and oxidation in cytotoxicity was not possible using these compounds. In hepatocytes pretreated with bischloroethyl-nitrosourea (BCNU) to inhibit glutathione reductase, all three naphthoquinones caused a potentiation of reduced glutathione (GSH) removal/oxidized glutathione (GSSG) generation and cytotoxicity relative to that observed in control cells. These data show that inhibition of hepatocyte glutathione reductase by BCNU results in enhanced naphthoquinone-induced oxidative challenge and subsequent cellular toxicity. That DMNQ and DENQ are cytotoxic, albeit at high concentrations, and that this cytotoxicity is potentiated by BCNU pretreatment suggest that oxidative processes alone can be a determinant of cytotoxicity.  相似文献   

12.
Aldo-keto reductase (AKR) enzymes are critical for the detoxication of endogenous and exogenous aldehydes. Previous studies have shown that the AKR7A2 enzyme is catalytically active toward aldehydes arising from lipid peroxidation, suggesting a potential role against the consequences of oxidative stress, and representing an important detoxication route in mammalian cells. The aim of this study was to determine the ability of AKR7A2 to protect cells against aldehyde cytotoxicity and genotoxicity and elucidate its potential role in providing resistance to oxidative stress. A transgenic mammalian cell model was developed in which AKR7A2 was overexpressed in V79-4 cells and used to evaluate the ability of AKR7A2 to provide resistance against toxic aldehydes. Results show that AKR7A2 provides increased resistance to the cytotoxicity of 4-hydroxynonenal (HNE) and modest resistance to the cytotoxicity of trans, trans-muconaldehyde (MUC) and methyglyoxal, but provided no protection against crotonaldehyde and acrolein. Cells expressing AKR7A2 were also found to be less susceptible to DNA damage, showing a decrease in mutation rate cause by 4-HNE compared to control cells. Furthermore, the role of the AKR7A2 enzyme on the cellular capability to cope with oxidative stress was assessed. V79 cells expressing AKR7A2 were more resistant to the redox-cycler menadione and were able to lower menadione-induced ROS levels in both a time and dose dependent manner. In addition, AKR7A2 was able to maintain intracellular GSH levels in the presence of menadione. Together these findings indicate that AKR7A2 is involved in cellular detoxication pathways and may play a defensive role against oxidative stress in vivo.  相似文献   

13.
1. Menadione was found to react with both the haem groups and the beta-93 thiol groups of haemoglobin. 2. It oxidized the haem groups of oxyhaemoglobin, giving mainly methaemoglobin and a smaller amount of haemichrome. The reaction rate was decrease in the presence of catalase and markedly accelerated in the presence of superoxide dismutase. It is proposed that the overall reaction involves the initial reversible formation of methaemoglobin and the semiquinone, and that the effect of superoxide dismutase is to prevent the reverse reaction, by removing superoxide and hene O2-. E.s.r. evidence for the information of the semi-quinone and its reactions is presented. 3. The reaction of menadione with the beta-93 thiol groups of haemoglobin appeared to be similar to that with other thiols, forming the 3-thioether derivative of menadione, but it was also accompanied by reduction of methaemoglobin. This reduction was prevented by superoxide dismutase, but appeared to be caused by the semiquinone radical, which was produced as an intermediate. 4. Reduced glutathione functioned only to a limited extent as a scavenger of the menadione semiquinone. Its main reaction was directly with menadione to form the thioether. Ascorbate was a more efficient scavenger, and accelerated the oxidation of oxyhaemoglobin by menadione. 5. The significance of these findings in relation to menadione-induced erythrocyte haemolysis is discussed.  相似文献   

14.
Cellular Antioxidant Properties of Human Natural Killer Enhancing Factor B   总被引:1,自引:0,他引:1  
The protein, NKEF (natural killer enhancing factor), has been identified as a member of an antioxidant family of proteins capable of protecting against protein oxidation in cell-free assay systems. The mechanism of action for this family of proteins appears to involve scavenging or suppressing formation of protein thiyl radicals. In the present study we investigated the antioxidant protective properties of the NKEF-B protein overexpressed in an endothelial cell line (ECV304). Nkef-B-transfected cells displayed significantly lower levels of reactive oxygen species (ROS) compared with control or vector-transfected cells. Tert-Butylhydroperoxide-induced ROS was 15% lower in nkef-8-transfected cells and cytotoxicity was slightly, though not significantly, lower. NKEF-B had no effect on ROS induced by menadione or xanthine plus xanthine oxidase. NKEF-B overexpression resulted in slightly (≈ 10%) lower levels of cellular glutathione (GSH) and had no effect on rate or extent of GSH depletion following either diethylmaleate (DEM) or buthionine sulfoximine (BSO) treatment. Lipid peroxidation, assessed as thiobarbituric acid-reactive substances, was 40% lower in nkef-B-transfected cells compared with vector-only-transfected cells. DEM-induced lipid peroxidation was suppressed by NKEF-B at DEM concentrations of 20 μM to 1 mM. At 10 mM DEM, lipid peroxidation was unaffected by NKEF-B. NKEF-B expression also protected cells against menadione-induced inhibition of [3H]-thymidine uptake. The NKEF-B protein appears most effective in suppressing basal low-level oxidative injury such as that produced during normal metabolism. These results indicate that overexpression of the NKEF-B protein promotes resistance to oxidative stress in this endothelial cell line.  相似文献   

15.
Benzophenone is an ultraviolet (UV)-absorbing agent that has been used in industry and medicine for more than 30 years. Consumers of cosmetics and sunscreens containing UV-absorbers are exposed to benzophenones on a daily basis, owing to the widespread use of these compounds. However, the efficacy of these compounds as scavengers of oxidative stress is still not well established. In the present study, we investigate the antioxidative capacity of six sunscreen benzophenone compounds. A primary myoblast culture was mixed in vitro with 100 microM menadione. The cytotoxic effect by menadione-induced oxidative stress was monitored by the lucigenin- or luminol-amplified chemiluminescence, methylthiotetrazole (MTT) assay, and the antioxidative effects of various benzophenone compounds were evaluated. The results showed that the addition of menadione can induce oxidative stress on myoblasts by superoxide and hydrogen peroxide production, which can be eradicated by superoxide dismutase (SOD) and catalase, respectively, in a dose-dependent mode. The catalase has a protective effect on the cytotoxicity induced by menadione as measured by the MTT assay, while the SOD does not. The selected benzophenones also have a significant scavenging effect on the menadione-induced cell death on the myoblasts. The ortho-dihydroxyl structure and other hydroxy groups in the same ring have a stronger scavenging effect on the superoxide anion on myoblasts; thus, a stable penoxy radical may be formed. The mechanism of this effect remains to be clarified.  相似文献   

16.
Although the relationship between hypercholesterolemia and oxidative stress has been extensively investigated, direct evidence regarding to the roles of cholesterol accumulation in the generations of reactive oxygen species (ROS) and apoptotic cell death under oxidative stress is lack. In this study, we investigated productions of superoxide anions (O(2)(-)) and nitric oxide (NO), and apoptotic cell death in wild type Chinese hamster ovary (CHO) cells and cholesterol accumulated CHO cells genetically and chemically. Oxidative stress was induced by menadione challenge. The results revealed that abundance of free cholesterol (FC) promoted menadione-induced O(2)(-) and NO productions. FC accumulation down-regulated eNOS expression but up-regulated NADPH oxidases, and inhibited the activities of superoxide dismutase (SOD) and catalase. Treatment of menadione increased the expressions of iNOS and qp91 phox, enhanced the activities of SOD and catalase in the wild-type CHO cells but inhibited the activity of glutathione peroxidase in the cholesterol accumulated CHO cells. Moreover, FC abundance promoted apoptotic cell death in these cells. Taken together, those results suggest that free cholesterol accumulation aggravates menadione-induced oxidative stress and exacerbates apoptotic cell death.  相似文献   

17.
Three models of free radical-induced cell injury   总被引:8,自引:0,他引:8  
Three models of free radical-induced cell injury are presented in this review. Each model is described by the mechanism of action of few prototype toxic molecules. Carbon tetrachloride and monobromotrichloromethane were selected as model molecules for alkylating agents that do not induce GSH depletion. Bromobenzene and allyl alcohol were selected as prototypes of GSH depleting agents. Paraquat and menadione were presented as prototypes of redox cycling compounds. All these groups of toxins are converted, during their intracellular metabolism, to active species which can be radical species or electrophilic intermediates. In most cases the activation is catalyzed by the microsomal mixed function oxidase system, while in other cases (e.g. allyl alcohol) cytosolic enzymes are responsible for the activation. Radical species can bind covalently to cellular macromolecules and can promote lipid peroxidation in cellular membranes. Of course both phenomena produce cell damage as in the case of CCl4 or BrCCl3 intoxication. However, the covalent binding is likely to produce damage at the molecular site where it occurs; lipid peroxidation, on the other hand, besides causing loss of membrane structure, also gives rise to toxic products such as 4-hydroxyalkenals and other aldehydes which in principle can move from the site of origin and produce effects at distant sites. Electrophilic intermediates readily reacts with cellular nucleophiles, primarily with GSH. The result is a severe GSH depletion as in the case of bromobenzene or allyl alcohol intoxication. When the depletion reaches some threshold values lipid peroxidation develops abruptly and in an extensive way. This event is accompanied by cellular death. The reason for which lipid peroxidation develops in a cell severely depleted of GSH remains to be clarified. Probably the loss of the defense systems against a constitutive oxidative stress is not compatible with cellular life. Some free radicals generated by one-electron reduction can react with oxygen to give superoxide anions which can be converted to other more dangerous reactive oxygen species. This is the case of paraquat and menadione. Damage to cellular macromolecules is due to the direct action of these oxygen radicals and, at least in the menadione-induced cytotoxicity, lipid peroxidation is not involved. All these initial events affect the protein sulfhydryl groups in the membranes. Since some protein thiols are essential components of the molecular arrangement responsible for the Ca2+ transport across cellular membranes, loss of such thiols can affect the calcium sequestration activity of subcellular compartments, that is the capacity of mitochondria and microsomes to regulate the cytosolic calcium level.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The effects of inhibitors of plasma membrane NADPH oxidase on menadione-induced cell injury processes were studied using human osteosarcoma 143B cells. The intracellular level of superoxide in the cells treated with menadione for 6 h reached a maximum followed by an abrupt decrease. The population of apoptotic cells detected by Annexin V and propidium iodide double staining also reached its maximum at 6 h of menadione-treatment while that of necrotic cells increased continuously reaching 90% of the total population at 9 h of the treatment. Pretreatment of the cells with inhibitors of NADPH oxidase, including diphenyliodonium chloride, apocynin, N-vanillylnonanamide and staurosporine was effective in lowering the menadione-induced elevations of superoxide, and also in the suppression of the switch of the cell death mode from apoptosis to necrosis in menadione-treated cells except for the case of staurosporine. These results strongly suggest that superoxide generated by NADPH oxidase, besides that generated by the mitochondria, may contribute to the remarkable increase in the intracellular level of superoxide in the cells treated with menadione for 6 h resulting in the switch from apoptosis to necrosis, although a direct evidence of the presence of active and inactive forms of NADPH oxidase in control and menadione-treated 143B cells is lacking at present.  相似文献   

19.
It was found that when Escherichia coli is grown in the presence of 0.2-0.3 mM menadione (2-methyl-1,4-naphthoquinone), an FMN-dependent NADH-quinone reductase increases more than 20-fold in the cytoplasmic fraction. The menadione-induced quinone reductase was isolated from the cytoplasmic fraction of induced cells. The purified enzyme had an Mr of 24 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme required flavin as a cofactor and a half-maximum activity was obtained with 0.54 microM FMN or 16.5 microM FAD. The enzyme had a broad pH optimum at pH 7.0-8.0 and reacted with NADH, but not with NADPH. The reaction followed a ping-pong mechanism and the intrinsic Km values for NADH and menadione were estimated to be 132 microM and 2.0 microM, respectively. Dicoumarol was a simple competitive inhibitor with respect to NADH with a Ki value of 0.22 microM. The electron acceptor specificity of this enzyme was very similar to that of NAD(P)H: (quinone acceptor) oxidoreductase (EC 1.6.99.2, DT-diaphorase) from rat liver. Since menadione is reduced by the two-electron reduction pathway to menadiol, the induction of this enzyme is likely to be an adaptive response of E. coli to partially alleviate the toxicity of menadione.  相似文献   

20.
AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells.METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine(a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species(ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号