首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations within the sagA gene of Aspergillus nidulans cause sensitisation to DNA-damaging chemicals but have no effect upon spontaneous or damage-induced mutation frequency. The sagA gene was cloned on a 19-kb cosmid-derived fragment by functional complementation of a sagA1 sagC3 double mutant; subsequently, a fragment of the gene was also isolated on a 3.9-kb genomic subclone. Initial sequencing of a small section of the 19-kb fragment allowed the design of primers that were subsequently used in RTPCR experiments to show that this DNA is transcribed. A 277-bp fragment derived from the transcribed region was used to screen an A. nidulans cDNA library, resulting in the isolation of a 1.4-kb partial cDNA clone which had sequence overlap with the genomic sagA fragment. This partial cDNA was incomplete but appeared to contain the whole coding region of sagA. The sagA1 mutant was shown to possess two mutations; a G-T transversion and a+1 frameshift due to insertion of a T, causing disruption to the C-terminal region of the SagA protein. Translation of the sagA cDNA predicts a protein of 378 amino acids, which has homology to the Saccharomyces cerevisiae End3 protein and also to certain mammalian proteins capable of causing cell transformation. Received: 1 August 1998 / Accepted: 9 November 1998  相似文献   

2.
Aspergillus nidulans reproduces asexually via uninucleate, haploid spores, which are produced on morphologically differentiated aerial structures, called conidiophores. These consist of four distinct cell types, a foot with a terminally swollen stalk, metulae, phialides and conidiospores. The molecular mechanisms underlying the morphological changes that occur during conidiophore development have been studied by mutant analysis. We have isolated the hymA mutant, in which conidiophore development is affected at the metula stage. In the mutant metulae do not differentiate properly but come to resemble hyphae (hym = hypha-like metulae). In this paper we have analyzed the corresponding gene. It encodes a highly expressed 44 kDa protein which resides in the cytoplasm and has homologues in yeast, plants, fly, worm, fish, mice and man. We constructed hym deletion strains of Saccharomyces cerevisiae and of A. nidulans and found that the gene is essential in S. cerevisiae but is dispensable in the filamentous fungus. A cellular function for the Hym protein has not yet been defined in any organism. To demonstrate functional conservation we constructed a chimeric protein comprised of the N-terminal half of the A.␣nidulans and the C-terminal half of the mouse homologue MO25. This hybrid protein could fully substitute for HymA function in A. nidulans. In addition, the mouse protein itself partially rescued the hymA mutation in the fungus. HymA is thus highly conserved in evolution and probably serves similar functions. The fact that hymA is required for conidiophore development in A. nidulans suggests that homologous genes in other organisms might also be involved in morphogenesis. Received: 11 February 1998 / Accepted: 14 September 1998  相似文献   

3.
The uvsC gene of Aspergillus nidulans is a homolog of the RAD51 gene of Saccharomyces cerevisiae. However, with respect to its effects on UV mutagenesis, it differs from the yeast gene, since it seems to be required for UV mutagenesis; however, this conclusion is based only on data from resting conidia. To further clarify the functional role of the uvsC gene, we tested the UV mutability of strains bearing a uvsC mutation in resting as well as in germinating conidia, by the p-fluoro-phenyl-alanine resistance test. We also evaluated the mutability of the uvsE mutant which belongs to the same epistatic group. Our results show that the uvsC and uvsE genes do not have a significant role in the mutagenic UV-repair pathway. Received: 20 January 1998 / Accepted: 22 April 1998  相似文献   

4.
The gene dak1 encoding a dihydroxyacetone kinase (DHAK) isoenzyme I, one of two isoenzymes in the Schizosaccharomyces pombe IFO 0354 strain, was cloned and sequenced. The dak1 gene comprises 1743 bp and encodes a protein of 62 245 Da. The deduced amino acid sequence showed a similarity to a putative DHAK of Saccharomyces cerevisiae and DHAK of Citrobacter freundii. The dak1 gene was expressed at a high level in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The acetone powder of recombinant E. coli cells was used to produce dihydroxyacetone phosphate. Received: 25 August 1998 / Received revision: 22 September 1998 / Accepted: 11 October 1998  相似文献   

5.
A gene for a synthetic protein-based polymer, G-(VPGVG)119-VPGV, coding for the EG-120mer (elastomer), was cloned into a fungal expression vector to allow constitutive expression of the polymer controlled by the gpdA (glyceraldehyde-3-phosphate dehydrogenase) promoter sequence of Aspergillus nidulans. Stable transformants of A. nidulans showed plasmid integration with varying copy number when analyzed by Southern-blot hybridization. Expression of the synthetic gene was demonstrated by Northern-blot hybridization. However, the translational efficiency for production of the polymer polypeptide was low, presumably because of certain codons in the polymer gene (CCG and GUA) that are rarely used by A. nidulans. Partial purification by reversible phase transition followed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of polymer protein in a transformant that contained multiple copies of the polymer gene. This study represents the first attempt to express a synthetic gene (with no natural analog) in a fungus. Received: 23 July 1996 / Received revision: 19 November 1996 / Accepted: 23 November 1996  相似文献   

6.
 A glutaminase from Aspergillus oryzae was purified and its molecular weight was determined to be 82,091 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified glutaminase catalysed the hydrolysis not only of l-glutamine but also of d-glutamine. Both the molecular weight and the substrate specificity of this glutaminase were different from those reported previously [Yano et al. (1998) J Ferment Technol 66: 137–143]. On the basis of its internal amino acid sequences, we have isolated and characterized the glutaminase gene (gtaA) from A. oryzae. The gtaA gene had an open reading frame coding for 690 amino acid residues, including a signal peptide of 20 amino acid residues and a mature protein of 670 amino acid residues. In the 5′-flanking region of the gene, there were three putative CreAp binding sequences and one putative AreAp binding sequence. The gtaA structural gene was introduced into A. oryzae NS4 and a marked increase in activity was detected in comparison with the control strain. The gtaA gene was also isolated from Aspergillus nidulans on the basis of the determined nucleotide sequence of the gtaA gene from A. oryzae. Received: 23 August 1999 / Received last revision: 7 January 2000 / Accepted: 14 January 2000  相似文献   

7.
The Taka-amylase A gene (taaG2) of Aspergillus oryzae is inducibly expressed in A. nidulans upon exposure to inducing carbon sources, such as starch and maltose. In order to identify nuclear factor(s) possibly involved in the induction of the taaG2 gene, gel mobility shift assays and DNase I footprinting analyses were carried out, and revealed a novel nuclear factor in A. nidulans extracts, which specifically bound to two sites in the taaG2 promoter region, −204 to −189 and −182 to −168, which share the common sequence GGAAATT. The nuclear factor was detected in nuclei from both induced and uninduced mycelia. Mutational analysis within and around the binding sequences demonstrated that only the upstream binding sequence, designated SRE (starch responsive element), was required for the inducible expression of the taaG2 gene, and thus we designated the nuclear factor SREB (SRE binding factor). The downstream binding site contained an inverted SRE (ISRE) and played no role in the induction of taaG2 expression. SREB was shown by gel retardation assays to have higher affinity for SRE than for ISRE. Received: 26 January 1999 / Accepted: 10 November 1999  相似文献   

8.
9.
We have cloned a gene (papA) that encodes a prolyl aminopeptidase from Aspergillus niger. Homologous genes are present in the genomes of the Eurotiales A. nidulans, A. fumigatus and Talaromyces emersonii, but the gene is not present in the genome of the yeast Saccharomyces cerevisiae. Cell extracts of strains overexpressing the gene under the control of its own promoter showed a fourfold to sixfold increase in prolyl aminopeptidase activity, but no change in phenylalanine or leucine aminopeptidase activity. The overexpressed enzyme was subsequently purified and characterised. The enzyme specifically removes N-terminal proline and hydroxyproline residues from peptides. It is the first enzyme of its kind from a eukaryotic organism that has been characterised.  相似文献   

10.
A xylanase gene, xynF1, was cloned and characterized from a shoyu koji mould Aspergillus oryzae KBN616. The xynF1 gene was found to be comprised of 1484 bp with ten introns. The deduced amino acid sequence encodes a protein consisting of 327 amino acids (35,402 Da) which is very similar to the fungal family F xylanases such as Aspergillus nidulans XlnC, Aspergillus kawachii XynA and Penicillium chrysogenum XylP. The intron/exon organization of xynF1 is very similar to that of the fungal family F xylanase genes. Plasmid pXPR64, which contains 64 copies of the xynF1 promoter region (PxynF1) in the same direction, was constructed and introduced into A. oryzae. This led to reduced expression of both xylanase and β-xylosidase genes in the transformants. Received: 18 May 1998 / Received revision: 7 July 1998 / Accepted: 9 July 1998  相似文献   

11.
For the development of an efficient gene expression system in a shoyu koji mold Aspergillus oryzae KBN616, the TEF1 gene, encoding translation-elongation factor 1α, was cloned from the same strain and used for expression of polygalacturonase genes. The TEF1 gene comprised 1647 bp with three introns. The TEF1-α protein consisted of 460 amino acids possessing high identity to other fungal TEF proteins. Two nucleotide sequences homologous to the upstream activation sequence, characterized for the ribosomal protein genes in Saccharomyces cerevisiae, as well as the pyrimidine-rich sequences were present in the TEF1 gene promoter region, suggesting that the A. oryzae TEF1 gene has a strong promoter activity. Two expression vectors, pTFGA300 and pTFGB200 for production of polygalacturonases A and B respectively, were constructed by using the TEF1 gene promoter. A polygalacturonase (PGB) gene cloned from the same strain comprised 1226 bp with two introns and encoded a protein of 367 amino acids with high similarity to other fungal polygalacturonases. PGA and PGB were secreted at approximately 100 mg/l in glucose medium and purified to homogeneity. PGA had a molecular mass of 41 kDa, a pH optimum of 5.0 and temperature optimum of 45 °C. PGB had a molecular mass of 39 kDa, a pH optimum of 5.0 and temperature optimum of 55 °C. Received: 28 November 1997 / Received revision: 24 February 1998 / Accepted: 6 March 1998  相似文献   

12.
The enzyme oxaloacetate hydrolase (EC 3.7.1.1), which is involved in oxalate formation, was purified from Aspergillus niger. The native enzyme has a molecular mass of 360–440 kDa, and the denatured enzyme has a molecular mass of 39 kDa, as determined by gel electrophoresis. Enzyme activity is maximal at pH 7.0 and 45 °C. The fraction containing the enzyme activity contained at least five proteins. The N-terminal amino acid sequences of four of these proteins were determined. The amino acid sequences were aligned with EST sequences from A. niger, and an EST sequence that showed 100% identity to all four sequences was identified. Using this EST sequence the gene encoding oxaloacetate hydrolase (oah) was cloned by inverse PCR. It consists of an ORF of 1227 bp with two introns of 92 and 112 bp, respectively. The gene encodes a protein of 341 amino acids with a molecular mass of 37 kDa. Under the growth conditions tested, the highest oah expression was found for growth on acetate as carbon source. The gene was expressed only at pH values higher than 4.0. Received: 9 May 1999 / Accepted: 30 November 1999  相似文献   

13.
Efficient production of recombinant barley α-amylase has been achieved in Aspergillus niger. The cDNA encoding α-amylase isozyme 1 (AMY1) and its signal peptide was placed under the control of the Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and the A. nidulans trpC gene terminator. Secretion yields up to 60 mg/l were obtained in media optimised for α-amylase activity and low protease activity. The recombinant AMY1 (reAMY1) was purified to homogeneity and found to be identical to native barley AMY1 with respect to size, pI, and immunoreactivity. N-terminal sequence analysis of the recombinant protein indicated that the endogenous plant signal peptide is correctly processed in A. niger. Electrospray ionisation/mass spectrometry gave a molecular mass for the dominant form of 44 960 Da, in accordance with the loss of the LQRS C-terminal residues; glycosylation apparently did not occur. The activities of recombinant and native barley α-amylases are very similar towards insoluble and soluble starch as well as 2-chloro-4-nitrophenol β-d-maltoheptaoside and amylose (degree of polymerisation = 17). Barley α-amylase is the first plant protein efficiently secreted and correctly processed by A. niger using its own signal sequence. Received: 22 August 1997 / Received revision: 21 November 1997 / Accepted: 29 November 1997  相似文献   

14.
 We previously isolated three chitin synthase genes (chsA, chsB, and chsC) from Aspergillus nidulans. In the present work, we describe the isolation and characterization of another chitin synthase gene, named chsD, from A. nidulans. Its deduced amino acid sequence shows 56.7% and 55.9% amino acid identity, respectively, with Cal1 of Saccharomyces cerevisiae and Chs3 of Candida albicans. Disruption of chsD caused no defect in cell growth or morphology during the asexual cycle and caused no decrease in chitin content in hyphae. However, double disruption of chsA and chsD caused a remarkable decrease in the efficiency of conidia formation, while double disruption of chsC and chsD caused no defect. Thus it appears that chsA and chsD serve redundant functions in conidia formation.  相似文献   

15.
16.
A plasmid (pYP17) containing a genomic DNA insert from Escherichia coli K-12 that confers the ability to hydrolyze carboxymethylcellulose (CMC) was isolated from a genomic library constructed in the cosmid vector pLAFR3 in E. coli DH5α. A small 1.65-kb fragment, designated bcsC (pYP300), was sequenced and found to contain an ORF of 1,104 bp encoding a protein of 368 amino acid residues, with a calculated molecular weight of 41,700 Da. BcsC carries a typical prokaryotic signal peptide of 21 amino acid residues. The predicted amino acid sequence of the BcsC protein is similar to that of CelY of Erwinia chrysanthemi, CMCase of Cellulomonas uda, EngX of Acetobacter xylinum, and CelC of Agrobacterium tumefaciens. Based on these sequence similarities, we propose that the bcsC gene is a member of glycosyl hydrolase family 8. The apparent molecular mass of the protein, when expressed in E. coli, is approximately 40 kDa, and the CMCase activity is found mainly in the extracellular space. The enzyme is optimally active at pH 7 and a temperature of 40° C. Received: 6 February 1998 / Accepted: 6 November 1998  相似文献   

17.
A cloned cDNA, generated from mRNA isolates of phosphate-derepressed H. polymorpha cells, was identified to harbour an incomplete sequence of the coding region for a repressible acid phosphatase. The cDNA fragment served as a probe to screen a plasmid library of H. polymorpha genomic DNA. A particular clone, p606, of a 1.9-kb insert contained a complete copy of the PHO1 gene. Sequencing revealed the presence of a 1329-nucleotide open reading frame encoding a protein of 442 amino acids with a calculated M r of 49400. The␣encoded protein has an N-terminal 17-amino-acid secretory leader sequence and seven potential N-glycosylation sites. The leader cleavage site was confirmed by N-terminal sequencing of the purified enzyme. The nucleotide sequence is 48.9% homologous, the derived amino acid sequence 36% homologous to its Saccharomyces cerevisiae counterpart. The derived amino acid sequence harbours a consensus sequence RHGXRXP, previously identified as a sequence involved in active-site formation of acid phosphatases. The PHO1 promoter and the secretion leader sequence present promising new tools for heterologous gene expression. Received: 15 January 1998 / Received revision: 2 March 1998 / Accepted: 4 March 1998  相似文献   

18.
The cytochrome c gene (cycA) of the filamentous fungus Aspergillus nidulans has been isolated and sequenced. The gene is present in a single copy per haploid genome and encodes a polypeptide of 112 amino acid residues. The nucleotide sequence of the A. nidulans cycA gene shows 87% identity to the DNA sequence of the Neurospora crassa cytochrome c gene, and approximately 72% identity to the sequence of the Saccharomyces cerevisiae iso-1-cytochrome c gene (CYC1). The S. cerevisiae CYC1 gene was used as a heterologous probe to isolate the homologous gene in A. nidulans. The A. nidulans cytochrome c sequence contains two small introns. One of these is highly conserved in terms of position, but the other has not been reported in any of the cytochrome c genes so far sequenced. Expression of the cycA gene is not affected by glucose repression, but has been shown to be induced approximatly tenfold in the presence of oxygen and three- to fourfold under heatshock conditions.  相似文献   

19.
Summary When a non-selected DNA sequence was added during the transformation of amdS320 deletion strains of Aspergillus nidulans with a vector containing the wild-type amdS gene the AmdS+ transformants were cotransformed at a high frequency. Cotransformation of an amdS320, trpC801 double mutant strain showed that both the molar ratio of the two vectors and the concentration of the cotransforming vector affected the cotransformation frequency. The maximum frequency obtained was defined by the gene chosen as selection marker for transformation. Cotransformation was used to induce a gene replacement in A. nidulans. An amdS320 strain was transformed to AmdS+ and cotransformed with a DNA fragment containing a fusion between a non-functional A. nidulans trpC gene and the Escherichia coli lacZ gene. Ten AmdS+, LacZ+ transformants with a Trp mutant phenotype were selected. All of these strains could be transformed with a functional copy of the A. nidulans trpC gene, but only two strains yielded TrpC+ transformants which, with a low frequency, had a LacZ phenotype. These latter transformants had also lost the AmdS+ phenotype. Southern blotting analysis of DNA from these transformants confirmed the inactivation of the wild-type trpC gene, but revealed that amdS vector sequences were also involved in the gene replacement events.  相似文献   

20.
The pyruvate kinase-encoding gene (pki1) from Trichoderma reesei was isolated by hybridization to the corresponding Aspergillus nidulans pkiA gene. The 1614-bp nucleotide (nt) sequence of the cloned gene codes for a 538-amino-acid protein. The coding sequence contains a single intron of 246 nt at a position identical to that of intron E in the A. nidulans gene. The PKI protein shows extensive homology to the PKIs of A. nidulans and A. niger (67%) and Saccharomyces cerevisiae (59%). The 5' non-coding sequence contains a number of motifs typical for yeast glycolytic genes, but so far only rarely found in filamentous fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号