首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyruvate, Pi dikinase in extracts of chloroplasts from mesophyll cells of Zea mays is inactivated by incubation with ADP plus ATP. This inactivation was associated with phosphorylation of a threonine residue on a 100 kDa polypeptide, the major polypeptide of the mesophyll chloroplast stroma, which was identified as the subunit of pyruvate, Pi dikinase. The phosphate originated from the beta-position of ADP as indicated by the labelling of the enzyme during inactivation in the presence of [beta-32P]ADP. During inactivation of the enzyme up to 1 mole of phosphate was incorporated per mole of pyruvate, Pi dikinase subunit inactivated. 32P label was lost from the protein during the Pi-dependent reactivation of pyruvate, Pi dikinase.  相似文献   

2.
The active site(s) of the bifunctional regulatory protein of pyruvate,orthophosphate dikinase catalyze(s) the Pi-dependent activation (dephosphorylation) and ADP-dependent inactivation (phosphorylation) of maize leaf dikinase. The chemical modification studies of the regulatory protein active sites presented in this paper are interpreted as showing the two sites to be physically distinct. Pyridoxal 5'-phosphate and 2-nitro-5-thiocyanatobenzoate (NTCB) selectively inhibit the dikinase activating site, which is protected by the nonprotein substrate, Pi. Phenylglyoxal blocks both the activation and inactivation sites; the former is protected selectively by Pi and the latter by both the nonprotein substrate, ADP, and Pi. The Pi that protects the inactivation site is distinct from the activation substrate. Inhibition studies show Pi to be a parabolic competitive inhibitor of the ADP-dependent inactivation of dikinase, implying that besides substrate Pi, a second phosphate also binds to the regulatory protein. The above chemical modifications are not mutually exclusive; neither NTCB, 5,5'-dithiobis-(2-nitrobenzoate), nor pyridoxal 5'-phosphate blocks subsequent modification of the activation site by phenylglyoxal. Similarly, prior modification with NTCB does not affect modification by pyridoxal 5'-phosphate.  相似文献   

3.
Pyruvate,Pi dikinase regulatory protein (PDRP) has been highly purified from maize leaves, and its role in catalyzing both ADP-mediated inactivation (due to phosphorylation of a threonine residue) and Pi-mediated activation (due to dephosphorylation by phosphorolysis) of pyruvate,Pi dikinase has been confirmed. These reactions account for the dark/light-mediated regulation of pyruvate,Pi dikinase observed in the leaves of C4 plants. During purification to apparent homogeneity the ratio of these two activities remained constant. The molecular weight of the native PDRP was about 180,000 at pH 8.3 and 90,000 at pH 7.5. Its monomeric molecular weight was 45,000. It was confirmed that inactive pyruvate,Pi dikinase free of a phosphate group on a catalytic histidine was the preferred substrate for activation. Michaelis constants for orthophosphate and the above form of active pyruvate,Pi dikinase were determined, as well as the mechanism of inhibition of the PDRP-catalyzed reaction by ATP, ADP, AMP, and PPi. For the inactivation reaction, Km values were 1.2 microM for the active pyruvate,Pi dikinase and 52 microM for ADP. CDP and GDP but not UDP could substitute for ADP. The inactivation reaction is inhibited by inactive pyruvate,Pi dikinase competitively with respect to both active pyruvate,Pi dikinase and ADP. Both the activation and inactivation reactions catalyzed by PDRP have a broad pH optimum between 7.8 and 8.3. The results are discussed in terms of the likely mechanism of dark/light regulation of pyruvate,Pi dikinase in vivo.  相似文献   

4.
In maize leaves, pyruvate, orthophosphate dikinase (PPDK) is deactivated in the dark and reactivated in the light. Studies in vitro using purified PPDK and a partially purified regulatory protein from maize confirmed previous reports correlating deactivation/reactivation with the reversible phosphorylation/dephosphorylation of a threonyl residue. By monitoring the stability of the exogenous 32P-labeled adenylate substrates during deactivation, we have firmly established ADP as the specific phosphate donor. In isolated maize leaf mesophyll protoplasts preilluminated with 32Pi, we observed a three- to fivefold higher PPDK activity in situ in the light, and a corresponding three- to fivefold higher level of phosphorylation of the 94-kDa PPDK protomer in the dark. HPLC-based phosphoamino acid analysis of PPDK purified from maize leaves of both light- and dark-adapted plants revealed the presence of P-serine. The inactive enzyme from dark-adapted plants (inactivated in vivo) also contained P-threonine. Total phosphate content of PPDK purified from leaves of light-adapted plants was approximately 0.5 mol/mol protomer, and 1.5 mol/mol protomer from leaves of dark-adapted plants. Since the difference between enzyme purified from light-adapted (active PPDK) and dark-adapted (inactive PPDK) plants is the presence of P-threonine in the latter, this suggests an inactivation stoichiometry in vivo of 1 mol P-threonine/mol 94-kDa protomer. These complementary studies with maize leaf PPDK in vitro, in situ, and in vivo provide convincing evidence for the dark/light regulation of this key C4-photosynthesis enzyme by reversible phosphorylation.  相似文献   

5.
These studies provide information about the mechanism of the light/dark-mediated regulation of pyruvate, Pi dikinase (EC 2.7.9.1) in leaves. It is shown that inactivation is due to a phosphorylation of the enzyme from the beta-phosphate of ADP, and that activation occurs by phosphorolysis to remove the enzyme phosphate group. During ADP plus ATP-dependent inactivation of pyruvate, Pi dikinase in chloroplast extracts, 32P was incorporated into the enzyme from [beta-32P]ADP. Approximately 1 mol of phosphate was incorporated per mol of monomeric enzyme subunit inactivated. There was very little incorporation of label from ADP or ATP labeled variously in other positions with 32P or from the nucleotides labeled with 3H in the purine ring. Purified pyruvate, Pi dikinase was also labeled from [beta-32P]ADP during inactivation. In this system, phosphorylation of the enzyme required the addition of the "regulatory protein" shown previously to be essential for catalyzing inactivation and activation. During orthophosphate-dependent reactivation of pyruvate, Pi dikinase, it was shown that the enzyme loses 32P label and that pyrophosphate is produced. The significance of these findings in relation to regulation of the enzyme in vivo is discussed.  相似文献   

6.
In C(4) plants such as maize, pyruvate,orthophosphate dikinase (PPDK) catalyzes the regeneration of the initial carboxylation substrate during C(4) photosynthesis. The primary catalytic residue, His-458 (maize C(4) PPDK), is involved in the ultimate transfer of the beta-phosphate from ATP to pyruvate. C(4) PPDK activity undergoes light-dark regulation in vivo by reversible phosphorylation of a nearby active-site residue (Thr-456) by a single bifunctional regulatory protein (RP). Using site-directed mutagenesis of maize recombinant C(4) dikinase, we made substitutions at the catalytic His residue (H458N) and at this regulatory target Thr (T456E, T456Y, T456F). Each of these affinity-purified mutant enzymes was assayed for changes in dikinase activity. As expected, substituting His-458 with Asn results in a catalytically incompetent enzyme. Substitutions of the Thr-456 residue with Tyr and Phe reduced activity by about 94 and 99%, respectively. Insertion of Glu at this position completely abolished activity, presumably by the introduction of negative charge proximal to the catalytic His. Furthermore, neither the T456Y nor inactive H458N mutant enzyme was phosphorylated in vitro by RP. The inability of the former to serve as a phosphorylation substrate indicates that RP is functionally a member of the Ser/Thr family of protein kinases rather than a "dual-specificity" Ser-Thr/Tyr kinase, since our previous work showed that RP effectively phosphorylated Ser inserted at position 456. The inability of RP to phosphorylate its native target Thr residue when Asn is substituted for His-458 documents that RP requires the His-P catalytic intermediate form of PPDK as its protein substrate. For these latter studies, synthetic phosphopeptide-directed antibodies specific for the Thr(456)-P form of maize C(4) PPDK were developed and characterized.  相似文献   

7.
A simple, single-tube radiolsotopic method has been developed to assay the relative phosphorylation (inaetivation) activity of the bifunctional regulatory protein (RP) of C4-leaf pyruvate,orthophosphate dikinase (PPDK) in desalted leaf homogenates and partially purified preparations. RP catalyzes the inactivation of maize PPDK by phosphorylation of Thr-456, utilizing [-P]ADP as the specific phosphoryl donor. Existing spectrophotometric and radioisotopic assays for the detection of RP activity are either relatively insensitive or labor-intensive and timeconsuming. We describe a modified radioisotopic assay that couples the synthesis of [-32P]ADP by exogenous adenylate kinase with the subsequent RP-catalyzed [-32P]ADP-dependent phosphorylation of exogenous maize PPDK. The incorporation of [-32P] is dependent on the initial concentrations of ATP and PPDK, as well as the presence of active RP. Desalted leaf homogenates of C3 species fail to catalyze 32P incorporation into exogenous maize PPDK. Conversely, heterologous systems containing the maize target enzyme and leaf homogenats of other C4 species result in PPDK-specific 32P-incorporation. This simple radioisotopic assay is at least 40-times more sensitive than the routine spectrophotometric assay, and qualitatively exhibits comparable sensitivity and requires significantly less time than the currently available radioisotopic RP assay. The present assay reliably generates [-32P]ADP and as such may be useful for studies of other systems requiring -labeled ADP, which is not commercially available.Abbrevlations Ap5A P1, P5-di(adenosine-5)-pentaphosphate - Bicine N,N-bis[2-hydroxyethyl]glycine - DTT dithiothreitol - PEI poly(ethyleneimine) - PEP phosphoenolpyruvate - PEPC PEP carboxylase (E.C.4.1.1.31) - PPDK pyruvate,orthophosphate dikinase (E.C.2.7.9.1) - RP PPDK regulatory protein  相似文献   

8.
Whole leaf and mesophyll cell concentrations of pyruvate, phosphoenolpyruvate (PEP), ATP, and ADP were determined in Zea mays during the reversible light activation of pyruvate, orthophosphate dikinase in vivo. Mesophyll cell levels of the four metabolites were estimated by extrapolation from values in freeze-quenched leaf samples that were fractionated by differential filtration through nylon mesh nets (adapted from M Stitt, HW Heldt [1985] Planta 164: 179-188). During the 3 minutes required for complete light activation of dikinase, pyruvate levels in the mesophyll cell decreased (from 166 ± 15 to 64 ± 10 nanomoles per milligram of chlorophyll [nmol/mg Chl]) while PEP levels increased (from 31 ± 4 to 68 ± 4 nmol/mg Chl, with a transient burst of 133 ± 16 nmol/mg Chl at 1 minute). Mesophyll cell levels of ATP increased (from 22 ± 4 to 48 ± 3 nmol/mg Chl) and ADP levels decreased (from 16 ± 4 to 7 ± 6 nmol/mg Chl) during the first minute of illumination. Upon darkening of the leaf and inactivation of dikinase, pyruvate levels initially increased in the mesophyll (from 160 ± 30 to a maximum of 625 ± 40 nmol/mg Chl), and then slowly decreased to about the initial value in the light over an hour. PEP levels dropped (from 176 ± 5 to 47 ± 3 nmol/mg Chl) in the first 3 minutes and remained low for the remainder of the dark period. Mesophyll levels of ATP and ADP rapidly decreased and increased, respectively, about twofold upon darkening. The trends observed for these metabolite levels in the mesophyll cell during the light/dark regulation of pyruvate, orthophosphate dikinase activity suggest that pyruvate and PEP do not play a major role in vivo in regulating the extent of light activation (dephosphorylation) or dark inactivation (ADP-dependent threonyl phosphorylation) of dikinase by its bifunctional regulatory protein. While the changes in ADP levels appear qualitatively consistent with a regulatory role for this metabolite in the light activation and dark inactivation of dikinase, they are not of a sufficient magnitude to account completely for the tenfold change in enzyme activity observed in vivo.  相似文献   

9.
Usuda H 《Plant physiology》1988,88(4):1461-1468
Recently, a nonaqueous fractionation method of obtaining highly purified mesophyll chloroplasts from maize leaves was established. This method is now used to determine adenine nucleotide levels, the redox states of the NADP system, Pi levels and dihydroxyacetone phosphate/3-phosphoglycerate ratios in mesophyll chloroplasts of Zea mays L. leaves under different light intensities. The sum of the ATP, ADP, and AMP levels was estimated to be 1.4 millimolar and the ATP/ADP ratio was 1 in the dark and 2.5 to 4 in the light. The adenine nucleotides were equilibrated by adenylate kinase. The total concentration of NADP(H) in the chloroplasts was 0.3 millimolar in the dark and 0.48 millimolar in the light. The ratio of NADPH/NADP was 0.1 to 0.18 in the dark and 0.23 to 0.48 in the light. The Pi level was estimated to be 20 millimolar in the dark and 10 to 17 millimolar in the light. The 3-phosphoglycerate reducing system was under thermodynamic equilibrium in the light. The calculated assimilatory forces were 8 per molar and 40 to 170 per molar in the dark and the light, respectively. There was no relationship between the degree of activation of pyruvate, Pi dikinase, and adenylate energy charge, or ATP/ADP ratio or ADP level under various light intensities. Only a weak relationship was found between the degree of activation of NADP-malate dehydrogenase and the NADPH/NADP ratio or NADP(H) level with increasing light intensity. A possible regulatory mechanism which is responsible for the regulation of activation of pyruvate,Pi dikinase and NADP-malate dehydrogenase is discussed.  相似文献   

10.
The gene for C4-pyruvate,orthophosphate dikinase (PPDK) from maize (Zea mays) was cloned into an Escherichia coli expression vector and recombinant PPDK produced in E. coli cells. Recombinant enzyme was found to be expressed in high amounts (5.3 U purified enzyme-activity liter-1 of induced cells) as a predominantly soluble and active protein. Biochemical analysis of partially purified recombinant PPDK showed this enzyme to be equivalent to enzyme extracted from illuminated maize leaves with respect to (i) molecular mass, (ii) specific activity, (iii) substrate requirements, and (iv) phosphorylation/inactivation by its bifunctional regulatory protein.Abbreviations DTT- dithiothreitol - FPLC- fast-protein liquid chromatography - HAP- hydroxyapatite - IPTG- isopropyl--thiogalactoside - MOPS- 3-(N-morpholino)propanesulfonic acid - PCR- polymerase chain reaction - PEP- phosphoenolpyruvate - PMSF- phenylmethylsufonyl fluoride - PPDK- pyruvate,orthophosphate dikinase - RP- regulatory protein  相似文献   

11.
Evidence is provided that the role of ATP in the ADP plus ATP-dependent inactivation of pyruvate,Pi dikinase is to catalytically phosphorylate the enzyme. Only this phosphorylated form of the enzyme is susceptible to inactivation by reacting with ADP. Phosphoenolpyruvate, which also phosphorylates pyruvate,Pi dikinase during catalysis, can replace the ATP-requirement for inactivation.  相似文献   

12.
The effect of adenine nucleotides in pyruvate, orthophosphate dikinase (EC 2.7.9.1, ATP, pyruvate, orthophosphate phosphotransferase)_was studied with the enzyme furified from maize, and with the enzyme obtained from mesophyll chloroplast extracts during assay in the direction of pyruvate conversion to phosphoenolpyruvate. (1) In studies with the purified enzyme, the relationship of initial velocity to ATP concentrations follows Michaelis-Menten kinetics, and the Km value for ATP was 22.8 μM (± 5.1 μM, n = 5). (2) AMP was a competitive inhibitor with respect to ATP, and its Ki value was 35.8 μM (± μM, n = 4). There was no inhibition of catalysis by ADP up to a concentration of 460 μM. (3) The theoretical response of the enzyme to change in the adenylate energy charge was calculated from the kinetic constants for ATP and AMP. The experimentally obtained values were similar to the theoretical response when varying energy charge was generated by addition of appropriate amounts of ATP, ADP and AMP in assays with the purified enzyme. The response of the enzyme to energy charge at different pH values (pH 7.0, 7.5, and 8.0) was similar, although the activity of the enzyme at pH 7.0 was about 40% of that at pH 8.0. (4) When mesophyll chloroplast extracts of maize, which contain high levels of adenylate kinase, were used as the source of the enzyme and the adenylate energy charge was generated by addition of different concentrations of ATP and AMP, the influence on catalysis was similar to that with the purified enzyme. (5) The data show that the effect of varying energy chage on the activity of the dikinase is not typical of a U-type enzyme, in contrast to phosphoglycerate kinase (EC 2.7.2.3, ATP: 3-phospho-D-glycerate 1-phosphotransferase), which is more strongly regulated. (6) Evidence is presented for competition between the dikinase and phosphoglycerate kinase for ATP in mesophyll chloroplast extracts of maize. (7) When the effect of adenylate energy charge on the state of activation and the direct effect on catalysis of the dikanase are combined, the total capacity for catalysis is very dependent on the energy charge.  相似文献   

13.
When intact maize (Zea mays) mesophyll chloroplasts were illuminated in the presence of [32P]orthophosphate and subsequently subjected to sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, a major polypeptide species of Mr 100000 was found to be heavily labelled. This polypeptide was not found in maize mesophyll thylakoid or cytoplasmic fractions, but was localized solely in the chloroplast stroma. No phosphorylation of polypeptides in the 100000-Mr region was observed in the mesophyll chloroplasts from C3 species (where the primary product of CO2 fixation is a 3-carbon compound), suggesting that this polypeptide arises from a protein associated with C4 metabolism (where the first product of CO2 fixation is a 4-carbon compound). The 100kDa polypeptide was major component of the maize mesophyll chloroplast, comprising 10-15% of the total protein, which banded in an identical position to the apoprotein of the enzyme pyruvate, orthophosphate dikinase, which catalyses a reaction of the C4 cycle [Edwards & Walker (1983) C3, C4: Mechanisms, and Cellular and Environmental Regulation, of Photosynthesis, Blackwell Scientific Publications, Oxford and London]. Phosphorylation in the 100kDa species was prohibited by treatment of lysed chloroplasts with antibody to pyruvate, orthophosphate dikinase (EC 2.7.9.1). These data suggest that the phosphorylated polypeptide observed after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis is the monomeric form of this enzyme. The 100kDa polypeptide was partially phosphorylated in darkness, but a significant increase in the degree of phosphorylation was found on illumination. This polypeptide was found to be dephosphorylated only slowly when the chloroplasts were returned to darkness. Maximum phosphorylation was observed in the presence of pyruvate or dihydroxyacetone phosphate, which also caused maximum activation of pyruvate, orthophosphate dikinase. Phosphorylation of the 100kDa polypeptide did not coincide with deactivation of pyruvate, orthophosphate dikinase, but maximum phosphorylation occurred under conditions that promoted maximum activity of the enzyme, at which time one phosphate group was associated with each enzyme molecule. Protein phosphorylation did not appear to arise from the reaction mechanism of the enzyme.  相似文献   

14.
In vitro activation of dark-inactivated pyruvate, orthophosphate dikinase extracted from maize (Zea mays L. cv. Golden Cross Bantam T51) leaves was examined. The inactive form of the enzyme and orthophosphate behaved kinetically as substrates for the reaction, which was catalyzed by an activating factor. This factor was bound by Blue Dextran Sepharose 4B and could be eluted by KCl at a concentration of 0.5m. The molecular weight of the maize leaf activating factor was about 88,000. Cibacron Blue 3G-A, a reactive moiety of Blue Dextran, inhibited the factor competitively with respect to the concentration of the inactive dikinase with a K(i) of 4.6 micromolar. Adenosine diphosphate and pyrophosphate were also found to be competitive inhibitors of activation, with respect to the inactive dikinase, giving K(i) values of 90 and 140 micromolar, respectively. Adenosine, other nucleotide diphosphates, and dinucleotides gave little or no inhibition of activation. These results suggest the association of a nucleotide, presumably nucleotide diphosphate, with the inactive form of pyruvate, orthophosphate dikinase.  相似文献   

15.
The influence of oxygen and temperature on the inactivation of pyruvate, Pi dikinase and NADP-malate dehydrogenase was studied in Zea mays. O2 was required for inactivation of both pyruvate, Pi dikinase and NADP-malate dehydrogenase in the dark in vivo. The rate of inactivation under 2% O2 was only slightly lower than that at 21% O2. The in vitro inactivation of pyruvate, Pi dikinase, while dependent on adenine nucleotides (ADP + ATP), did not require O2.

The postillumination inactivation of pyruvate, Pi dikinase in leaves was strongly dependent on temperature. As temperature was decreased in the dark, there was a lag period of increasing length (e.g. at 17°C there was a lag of about 25 minutes) before inactivation proceeded. Following the lag period, the rate of inactivation decreased with decreasing temperature. The half-time for dark inactivation was about 7 minutes at 32°C and 45 minutes at 17°C. The inactivation of pyruvate, Pi dikinase in vitro following extraction from illuminated leaves was also strongly dependent on temperature, but occurred without a lag period. In contrast, NADP-malate dehydrogenase was rapidly inactivated in leaves (half-time of approximately 3 minutes) during the postillumination period without a lag, and there was little effect of temperature between 10 and 32°C. The results are discussed in relation to known differences in the mechanism of activation/inactivation of the two enzymes.

  相似文献   

16.
These studies provide further information regarding the mechanism of the light/dark-mediated regulation of pyruvate,Pi dikinase in leaves. It is shown that a catalysis-linked phosphorylation of pyruvate,Pi dikinase can be demonstrated following incubation of the enzyme with [32P]phosphoenolpyruvate or [beta-32P]ATP plus Pi, that the enzyme-bound phosphate is located on a histidine residue, and that this phosphate is retained during ADP-mediated inactivation. Further evidence is provided that phosphorylation of this histidine is a prerequisite for ADP-mediated inactivation through phosphorylation of a threonine residue from the beta-phosphate of ADP. It is demonstrated that diethylpyrocarbonate (which forms a derivative with histidine residues) prevents [32P]phosphoenolpyruvate-dependent labeling (catalytic labeling) and [beta-32P]ADP-dependent labeling (inactivation labeling) of the enzyme. In addition, it is demonstrated that oxalate, an analog of pyruvate, competitively inhibits ADP-dependent inactivation with respect to ADP. The significance of these results is discussed with regard to the mechanism of regulation of pyruvate,Pi dikinase in vivo.  相似文献   

17.
Crude extracts of maize leaf tissue catalysed the phosphorylation of AMP by 32PPi in the presence of phosphoenolpyruvate (PEP). The reaction was enhanced by F? and NH4+. The optimum concentrations of AMP, PEP and PPi were 0.3, 10 and 1 mM, respectively. Under these conditions, ca75% of the AMP phosphorylated by 32PPi was present as ATP and ca25 % as ADP. The activity was reversibly cold labile. The specific activity of crude extracts in the presence of F? was proportional to enzyme concentration only at protein concentrations < 25,μg/ml. Partially purified pyruvate, phosphate dikinase (PPD) from maize leaf quantitatively phosphorylated AMP to ATP in a (PEP plus PPi)-dependent reaction with the concomitant production of 0.9 mol of pyruvate per mol of AMP phosphorylated. It was concluded that (PEP plus PPi)-dependent phosphorylation of AMP provides a reliable method for estimating PPD activity in crude extracts of maize. Crude maize extracts also catalysed 32Pi-ATP and 32PPi-ATP exchange but these activities were not specific for PPD.  相似文献   

18.
In vitro phosphorylation of maize leaf phosphoenolpyruvate carboxylase   总被引:3,自引:2,他引:1  
Budde RJ  Chollet R 《Plant physiology》1986,82(4):1107-1114
Autoradiography of total soluble maize (Zea mays) leaf proteins incubated with 32P-labeled adenylates and separated by denaturing electrophoresis revealed that many polypeptides were phosphorylated in vitro by endogenous protein kinase(s). The most intense band was at 94 to 100 kilodaltons and was observed when using either [γ-32P]ATP or [β-32P]ADP as the phosphate donor. This band was comprised of the subunits of both pyruvate, Pi dikinase (PPDK) and phosphoenolpyruvate carboxylase (PEPCase). PPDK activity was previously shown to be dark/light-regulated via a novel ADP-dependent phosphorylation/Pi-dependent dephosphorylation of a threonyl residue. The identity of the acid-stable 94 to 100 kilodalton band phosphorylated by ATP was established unequivocally as PEPCase by two-dimensional gel electrophoresis and immunoblotting. The phosphorylated amino acid was a serine residue, as determined by two-dimensional thin-layer electrophoresis. While the in vitro phosphorylation of PEPCase from illuminated maize leaves by an endogenous protein kinase resulted in a partial inactivation (~25%) of the enzyme when assayed at pH 7 and subsaturating levels of PEP, effector modulation by l-malate and glucose-6-phosphate was relatively unaffected. Changes in the aggregation state of maize PEPCase (homotetrameric native structure) were studied by nondenaturing electrophoresis and immunoblotting. Enzyme from leaves of illuminated plants dissociated upon dilution, whereas the protein from darkened tissue did not dissociate, thus indicating a physical difference between the enzyme from light- versus dark-adapted maize plants.  相似文献   

19.
In experiments designed to test the reversibility of ADP-dependent inactivation and Pi-dependent activation of pyruvate, Pi dikinase , it was found that the preferred substrate for Pi dependent activation is the catalytically non-phosphorylated form of pyruvate, Pi dikinase . Only the second of the two partial reactions catalysed by pyruvate, Pi dikinase is inhibited when pyruvate, Pi dikinase is inactivated by ADP-dependent phosphorylation. Neither ADP-dependent inactivation nor Pi-dependent activation reactions were found to be reversible.  相似文献   

20.
A protein kinase of 57 kDa, able to phosphorylate tyrosine in synthetic substrates pol(Glu4,Tyr1) and a fragment of Src tyrosine kinase, was isolated and partly purified from maize seedlings (Zea mays). The protein kinase was able to phosphorylate exogenous proteins: enolase, caseins, histones and myelin basic protein. Amino acid analysis of phosphorylated casein and enolase, as well as of phosphorylated endogenous proteins, showed that both Tyr and Ser residues were phosphorylated. Phosphotyrosine was also immunodetected in the 57 kDa protein fraction. In the protein fraction there are present 57 kDa protein kinase and enolase. This co-purification suggests that enolase can be an endogenous substrate of the kinase. The two proteins could be resolved by two-dimensional electrophoresis. Specific inhibitors of typical protein-tyrosine kinases had essentially no effect on the activity of the maize enzyme. Staurosporine, a nonspecific inhibitor of protein kinases, effectively inhibited the 57 kDa protein kinase. Also, poly L-lysine and heparin inhibited tyrosine phosphorylation by 57 kDa maize protein kinase. The substrate and inhibitor specificities of the 57 kDa maize protein kinase phosphorylating tyrosine indicate that it is a novel plant dual-specificity protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号