首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gao X  Xin BM  Zhu CB  Wu GC  Xu SF 《生理学报》1998,50(1):43-48
在大鼠电刺激甩测痛模型上,应用鞘内注射(it)多巴胺(DA)受体选择性激动剂与拮抗剂,分析大鼠脊髓DA受体亚型D1和D2在痛及针刺镇痛(AA)中的作用。结果显示,在正常清醒大鼠,it D2受体选择性激动剂,Y171555(LY)或D1/D2受体激动剂阿朴吗啡(APO)有镇痛作用(呈剂量依赖式增加),并加强AA,而it D1受体选择性激动剂SKF38393(SKF)对痛及AA均无影响;it D1受体  相似文献   

2.
The effects of selective D1 and D2 dopaminergic agents on the extracellular acetylcholine (ACh) content in striata of freely moving rats were determined by the microdialysis technique. LY 171555, a selective D2 agonist, reduced ACh output by approximately 30% within 20 min at the dose of 0.2 mg/kg, i.p., whereas the D2 antagonists (-)-remoxipride (10 mg/kg, s.c.) and L-sulpiride (50 mg/kg, i.p.) induced maximal increases of approximately 50% within 10 and 20 min, respectively. In contrast, the D1 antagonist SCH 23390 (0.25 mg/kg, s.c.) decreased the extracellular ACh content by approximately 30% in 20 min, but lower doses--0.025 and 0.05 mg/kg--had no such effect. The stimulation of ACh release by LY 171555 was prevented by (-)-remoxipride but not by SCH 23390 (0.25 mg/kg, s.c.). In addition, the D1 agonist SKF 38393 failed to modify the ACh increasing effect of (-)-remoxipride. Thus, the D1 and D2 receptors subserve opposing functions on ACh release. The D1/D2 dopaminergic agonist R-apomorphine, at the does of 1 mg/kg, i.p., reduced ACh output by approximately 35% only when D1 receptors were blocked by SCH 23390 (0.025 mg/kg, s.c.). The results provide clear in vivo evidence of the tonic inhibition exerted by dopaminergic nigrostriatal input on the cholinergic system of the basal ganglia through D1 and D2 receptors.  相似文献   

3.
SCH 23390, an apparently selective antagonist of central D1 dopamine receptors, produced profound catalepsy at low doses (0.1 mg/kg, s.c.). Pretreatment with the selective D2 receptor agonists LY 141865, RU 24213 or LY 171555, the active (-) enantiomer of LY 141865, elicited a dose-dependent inhibition of the cataleptic response. Pergolide and apomorphine were also effective. This effect was not due to altered disposition or penetration of SCH 23390 into the brain since pretreatment with a dose of LY 171555 which completely blocked catalepsy had no effect on the ID50 of SCH 23390 to inhibit 3H-cis-piflutixol binding to D1 receptors measured ex vivo. Alternative mechanisms are considered to explain the results, which offer new insights into striatal dopaminergic regulation of motor activity.  相似文献   

4.
Quercetin, a bioflavonoid (100-300 mg/kg) produced dose dependent increase in tail-flick latency, the analgesic effect being sensitive to reversal by naloxone (1 mg/kg). Prior treatment with haloperidol (1 mg/kg), D1/D2 receptor antagonist haloperidol, sulpiride (50 mg/kg), a selective D2 receptor antagonist, yohimbine (5 mg/kg), a alpha2-adrenoreceptor antagonist but not by SCH 23390 a, selective D1 receptor antagonist blocked this response. Apomorphine (1 mg/kg) a mixed D1/D2 dopamine receptor agonist, and quinpirole (0.5 mg/kg), a selective D2 receptor agonist also produced antinociception, that was reversed by haloperidol (1 mg/kg), sulpiride (50 mg/kg), but not by yohimbine (5 mg/kg). The antinociceptive action of quercetin (200 mg/kg) was potentiated by D2 agonist quinpirole (0.2 mg/kg). Dopamine D1 receptor agonist SKF38393 (10 and 15 mg/kg) failed to alter the antinociceptive effect of quercetin (200 mg/kg). Quercetin (200 mg/kg) reversed reserpine (2 mg/kg-4 hr) induced hyperalgesia, which was reversed by sulpiride but not by yohimbine. Thus, a role of dopamine D2 and alpha2-adrenoreceptors is postulated in the antinociceptive action of quercetin.  相似文献   

5.
The genetic factors involved in the regulation of physical activity are not well understood. The dopamine system has been implicated in the control of voluntary locomotion and wheel running (WR) in mice and is thus a likely candidate as a genetic/biological system important to the regulation of physical activity. This study evaluated the effects of four different dopaminergic acting drugs on WR in differentially active inbred strains of mice. High active C57L/J (n=7, 3 controls, 4 experimental) and low active C3H/HeJ (n=8, 3 controls, 5 experimental) were analyzed for baseline wheel-running indices of distance (km/day), duration (mins/day), and speed (m/min) for 21 days. Experimental mice received increasing doses over four days of each of the following drugs: SKF 81297 (D1 agonist), SCH 23390 (D1 antagonist), GBR 12783 (DAT inhibitor), and AMPT (tyrosine hydroxylase inhibitor). Each drug dose response treatment was separated by three days of recovery (no drug injections). WR indices were monitored during drug treatments and during drug wash-out phases. SKF 81297 significantly reduced (p=0.0004) WR in the C57L/J mice, but did not affect WR in the C3H/HeJ mice. GBR 12783 significantly increased (p=0.0005) WR in C3H/HeJ mice, but did not affect WR in C57L/J mice. Only duration (not overall WR) was significantly reduced in C57L/J mice in response to SCH 23390 (p=0.003) and AMPT (p=0.043). SCH 23390 (p=0.44) and AMPT (p=0.98) did not significantly affect WR in C3H/HeJ mice. These results suggest that genetic differences in dopamine signaling may play a role in the WR response to dopaminergic-acting drugs in inbred strains of mice. The high activity in the C57L/J strain appears most responsive to D1-like receptor acting drugs, while in the C3H/HeJ strain, dopamine re-uptake appears to have an influence on activity level.  相似文献   

6.
In the retinal pigment epithelium (RPE) of lower vertebrates, melanin pigment granules aggregate and disperse in response to changes in light conditions. Pigment granules aggregate into the RPE cell body in the dark and disperse into the long apical projections in the light. Pigment granule movement retains its light sensitivity in vitro only if RPE is explanted together with neural retina. In the absence of retina, RPE pigment granules no longer move in response to light onset or offset. Using a preparation of mechanically isolated fragments of RPE from green sunfish, Lepomis cyanellus, we investigated the effects of catecholamines on pigment migration. We report here that 3,4-dihydoxyphenylethylamine (dopamine) and clonidine each mimic the effect of light in vivo by inducing pigment granule dispersion. Dopamine had a half-maximal effect at approximately 2 nM; clonidine, at 1 microM. Dopamine-induced dispersion was inhibited by the D2 dopaminergic antagonist sulpiride but not by D1 or alpha-adrenergic antagonists. Furthermore, a D2 dopaminergic agonist (LY 171555) but not a D1 dopaminergic agonist (SKF 38393) mimicked the effect of dopamine. Clonidine-induced dispersion was inhibited by the alpha 2-adrenergic antagonist yohimbine but not by sulpiride. These results suggest that teleost RPE cells possess distinct D2 dopaminergic and alpha 2-adrenergic receptors, and that stimulation of either receptor type is sufficient to induce pigment granule dispersion. In addition, forskolin, an activator of adenylate cyclase, induced pigment granule movement in the opposite direction, i.e., dark-adaptive pigment aggregation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
P M Iuvone 《Life sciences》1986,38(4):331-342
The regulation of serotonin N-acetyltransferase (NAT) activity and cyclic AMP accumulation in the retina of the African clawed frog (Xenopus laevis) was studied using an in vitro eye cup preparation. Retinal NAT, a key enzyme in the synthesis of melatonin, is expressed as a circadian rhythm with peak activity at night. The increase of NAT activity at night appears to be mediated by cyclic AMP and is suppressed by light. Dopamine inhibits the nocturnal increase of retinal NAT activity; approximately 80% inhibition was observed with 1 microM dopamine. Dopamine at 1 microM did not stimulate retinal cyclic AMP accumulation. The effect of dopamine on NAT activity was antagonized by the D2-selective receptor antagonists spiperone and metoclopramide, but not by the putative D1 selective antagonist SCH 23390. The nocturnal rise in NAT activity was inhibited by LY 171555, a putative D2 selective agonist, but not by SKF 38393, a putative D1 selective agonist. LY 171555 also decreased cyclic AMP accumulation in eye cups incubated under similar conditions. Dopamine inhibited the stimulation of NAT activity in light by 3-isobutylmethylxanthine, but not that by dibutyryl cyclic AMP, suggesting that dopamine acts by decreasing cyclic AMP formation in the NAT-containing cells. Thus, the effects of dopamine on NAT activity may be mediated by a receptor with the pharmacological and biochemical characteristics of a D2 receptor.  相似文献   

8.
Evidence indicates that stress conditions might lead to drug dependence. Recently, we have demonstrated that exposure to far infrared ray (FIR) attenuates acute restraint stress via induction of glutathione peroxidase-1 (GPx-1) gene. We investigated whether FIR affects methamphetamine (MA)-induced behavioral sensitization and whether FIR-mediated pharmacological activity requires interaction between dopamine receptor and GPx-1 gene. We observed that MA treatment significantly increased GPx-1 expression in the striatum of wild-type (WT) mice. Interestingly, exposure to FIR potentiated MA-induced increase in GPx-1 expression. This phenomenon was also observed in animals receiving MA with dopamine D1 receptor antagonist SCH23390. However, dopamine D2 receptor antagonist sulpiride did not affect MA-induced GPx-1 expression. FIR exposure or SCH23390, but not sulpiride, significantly attenuated MA-induced behavioral sensitization. Exposure to FIR significantly attenuated MA-induced dopamine D1 receptor expression, c-Fos induction and oxidative burdens. FIR-mediated antioxidant effects were also more pronounced in mitochondrial- than cytosolic-fraction. In addition, FIR significantly attenuated against MA-induced changes in mitochondrial superoxide dismutase and mitochondrial GPx activities, mitochondrial transmembrane potential, intramitochondrial Ca2+ level, mitochondrial complex-I activity, and mitochondrial oxidative burdens. The attenuation by FIR was paralleled that by SCH23390. Effects of FIR or SCH23390 were more sensitive to GPx-1 KO than WT mice, while SCH23390 treatment did not exhibit any additive effects on the protective activity mediated by FIR, indicating that dopamine D1 receptor constitutes a molecular target of FIR. Our result suggests that exposure to FIR ameliorates MA-induced behavioral sensitization via possible interaction between dopamine D1 receptor and GPx-1 gene.  相似文献   

9.
《Life sciences》1994,54(23):PL413-PL418
In rat striatal membranes, various kinds of dopamine receptor agonists stimulated low-Km GTPase activity in a concentration-dependent manner. This stimulation by bromocriptine, pergolide and apomorphine was partially inhibited by sulpiride (SUL), a D2-selective antagonist, markedly inhibited by combination of SUL with SCH 23390 (SCH), a D1-selective antagonist, and not modified by SCH alone. The stimulation by BAM-1110 was resistant to SUL or SCH alone but abolished by combination of SUL with SCH. These findings suggest the presence of another subtype of a dopamine receptor in a functional in vitro bioassay system in rat striata.  相似文献   

10.
K Takamori  S Yoshida  S Okuyama 《Life sciences》2001,69(16):1919-1926
Chronic administration of antidepressants has been shown to reduce the number of escape failures in the rat learned helplessness test (LH). In the present study we investigated the role of D1, D2 and D3 receptors in mediating this effect. In our first series of experiments, we demonstrated that SKF38393, D1 receptor agonist, in a dose of 2.5 mg/kg (i.p.) and quinpirole, D2 receptor agonist in a dose of 0.5 mg/kg (i.p.), significantly decreased the number of escape failures in LH, and these were reversed by SCH23390 (0.015 mg/kg), D1 receptor antagonist, and by sulpiride (25 mg/kg), D2 receptor antagonist, respectively. In contrast, 7-OH-DPAT, a D3 receptor agonist, in a dose of 10 mg/kg (i.p.) did not affect the number of escape failures in LH. In a second series of experiments, we showed that eight days of repeated treatment with imipramine (10 mg/kg, p.o.), fluvoxamine (1.25 mg/kg, p.o.) and tranylcypromine (1.25 mg/kg, p.o.) significantly decreased the number of escape failures in LH. The decrease in escape failures seen with use of imipramine and tranylcypromine was reversed by sulpiride in LH, but not by SCH23390. On the other hand, the effect of fluvoxamine was reversed by both SCH23390 and sulpiride. These findings indicate that stimulation of D1 and D2 receptors decreased the number of escape failures in LH, respectively. Thus, D2 and/or D1 receptors are probably involved in the decreased number of escape failures in case of repeated treatment with antidepressants in LH.  相似文献   

11.
In the retinas of many species of lower vertebrates, retinal photoreceptors and pigment epithelium pigment granules undergo daily movements in response to both diurnal, and in the case of teleost cone photoreceptors, endogenous circadian signals. Typically, these cone movements take place at dawn and at dusk when teleosts are maintained on a cyclic light (LD) regime, and at expected dawn and expected dusk when animals are maintained in continuous darkness (DD). Because these movements are so strictly controlled, they provide an overt indicator of the stage of the underlying clock mechanism. In this study we report that both light-induced and circadian-driven cone myoid movements in the Midas cichlid (Cichlasoma citrinellum), occur normally in vitro. Many of the features of retinomotor movements found in vivo also occur in our culture conditions, including responses to light and circadian stimuli and dopamine. Circadian induced predawn contraction and maintenance of expected day position in response to circadian modulation, are also normal. Our studies suggest that circadian regulation of cone myoid movement in vitro is mediated locally by dopamine, acting via a D2 receptor. Cone myoid contraction can be induced at midnight and expected mid-day by dark culture with dopamine or the D2 receptor agonist LY171555. Further, circadian induced predawn contraction can be increased with either dopamine or LY171555, or may be reversed with the dopamine D2 antagonist, sulpiride. Sulpiride will also induce cone myoid elongation in retinal cultures at expected mid- day, but will not induce cone myoid elongation at dusk. In contrast, circadian cone myoid movements in vitro were unaffected by the D1 receptor agonist SCH23390, or the D1 receptor antagonist SKF38393. Our short-term culture experiments indicate that circadian regulation of immediate cone myoid movement does not require humoral control but is regulated locally within the retina. The inclusion of dopamine, or dopamine receptor agonists and antagonists in our cultures, has indicated that retinal circadian regulation may be mediated by endogenously produced dopamine, which acts via a D2 mechanism.  相似文献   

12.
R Longoni  L Spina  G Di Chiara 《Life sciences》1987,41(18):2135-2145
The syndrome of behavioral stimulation induced in male Sprague-Dawley rats by two dopaminergic agents was studied by distinguishing specific behavioral items and quantifying them in terms of their incidence. The specific D-2 agonist LY 171555 elicited yawning, genital grooming, exploratory behavior, downward sniffing and licking but failed to induce gnawing even at high doses. On the other hand, the D-1/D-2 agonist apomorphine elicited the full stereotyped syndrome including gnawing. Depletion of endogenous dopamine (DA) by alpha-methyltyrosine (alpha-MT) prevented the ability of LY 171555 to elicit all the items of behavioral stimulation including the stereotyped ones (sniffing and licking). In contrast, the ability of apomorphine to induce stereotypies was not reduced by depletion of endogenous DA by alpha-MT pretreatment. Blockade of D-1 receptors with SCH 23390 abolished the capacity of both LY 171555 and apomorphine to elicit all the items of behavioral stimulation. In alpha-MT pretreated rats, administration of low doses of the D-1 agonist SKF 38393 (2.5 mg/kg s.c.) reinstated the ability of LY 171555 to elicit behavioral stimulation and eventually conferred the ability of inducing gnawing. The results support the hypothesis that stimulation of D-1 receptors exerts a permissive role for the expression of behavioral stimulation following D-2 receptor stimulation. Endogenous DA appears to provide sufficient D-1 input to permit full expression of yawning, genital grooming, exploratory behavior, downward sniffing and licking following D-2 stimulation; pharmacological stimulation of D-1 in addition to D-2 receptors seems however necessary for full expression of the highest rank stereotypy item, gnawing.  相似文献   

13.
J M Gorell  B Czarnecki 《Life sciences》1986,38(24):2239-2246
This study was done to provide pharmacologic evidence for the location of those striatal dopamine D-1 and D-2 receptors that participate in the regulation of local acetylcholine (ACh) release. Striatal tissue slices from adult male Sprague-Dawley rats were preloaded with [3H]choline and superfused in separate experiments with buffer containing either: a D-2-specific agonist (LY141865 or LY171555), a D-2 specific antagonist (L-sulpiride), a D-1 specific agonist (SKF38393), or a D-1 antagonist (SCH23390), in the presence or absence of tetrodotoxin (TTX), used to block interneuronal activity. With either D-2 agonist there was a dose-dependent decrease in K+-stimulated [3H]ACh release, maximally at 5 X 10(-7)-10(-6) M [agonist] and to the same extent with each drug. Both SKF38393 and SCH23390 increased [3H]ACh release at tested concentrations of these agents. Results were unchanged when any of the drugs used was superfused in the presence of TTX, 5 X 10(-7) M. These data are consistent with the hypothesis that populations of striatal D-1 and D-2 receptors exist on local cholinergic neurons, where they regulate ACh release. Alternative interpretations are discussed.  相似文献   

14.
The dopamine receptor antagonists SCH 23390 and spiperone show highly selective in vitro affinity for D-1 and D-2 dopamine receptor subtypes, respectively. We studied the effects of these selective antagonists on the supersensitive locomotor response to apomorphine in rats following 6- hydroxydopamine (6OHDA) lesions of the nucleus accumbens (N. Acc.). Both D-1 and D-2 receptor antagonists produced dose-dependent blockade of the supersensitive locomotor response at doses that did not depress baseline locomotor activity. The behavioral properties of these D-1 and D-2 receptor antagonists were further examined using a simple step-down motor task. Both antagonists produced catalepsy as evidenced by dose-dependent increases in step- down latency. These results indicate that drugs with distinct in vitro dopamine binding affinities cannot be distinguished on the basis of their ability to inhibit supersensitive locomotor activity or simple motor tasks in rats in vivo.  相似文献   

15.
Previous studies show a differential effect of dopamine and its agonist apomorphine on ventilation, being depressant on adults and stimulatory on fetal respiratory breathing movements. In view of this we studied the effect of apomorphine, specific antagonists of dopamine receptors SCH 23390 (D1), sulpiride and domperidone (D2), and cis(z)-flupentixol (D1 + D2) on the typical ventilatory response to hypoxia in neonatal rabbit pups. This ventilatory response to hypoxia is characterized by an initial stimulatory (phase 1) followed by a declining (phase 2) pattern. Cis(z)-flupentixol markedly increased phase 1 and abolished phase 2. A similar effect was seen with SCH 23390. Administration of sulpiride or domperidone increased phase 1 but did not affect phase 2, thereby not altering the biphasic pattern of ventilation to hypoxia. The abolition of the biphasic response in neonatal pups on decerebration was also found to be restored by topical application of apomorphine in the fourth ventricle. Our results suggest that dopamine is acting centrally in mediating the declining phase of the biphasic response to hypoxia in rabbit pups possibly via the D1-receptors.  相似文献   

16.
Significant genotypic differences in shock-induced aggression were found in mice of eight inbred strains. Aggression was evaluated in test with the action of low electric current through the cage floor. Low aggressive strains C3H/He, DD, BALB/c, AKR and highly aggressive strains CBA, DBA/2. CC57Br were singled out by the number of aggressive attacks. Selective stimulation of dopamine D2 receptors by bromocriptine considerably increased the shock-induced aggressiveness in mice of low-aggressive strains. Blockade of D2-receptors by the injection of antagonist sulpiride decreased or prevented the manifestation of aggression in highly-aggressive mice. At the same time selective agonist of dopamine (D1) receptors SKF 38393 and administration of selective antagonist of D1-receptors SCH 23390 did not influence significantly shock-induced aggression. Thus, shock-induced aggression, depends on the animal genotype and activation of D2-receptors.  相似文献   

17.
This study examined the effects of dopamine D1 and D2 receptor agonists and antagonists on the spontaneous and calcium-dependent, K+-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) accumulated by slices of rat substantia nigra. SKF 38393 (D1 agonist) and dopamine (dual D1/D2 agonist) were without effect on [3H]GABA efflux by themselves (1-40 microM), or in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (0.5 mM), but potentiated evoked release in the presence of forskolin (0.5 microM), an adenylate cyclase activator. These increases in release were prevented by the D1 antagonist SCH 23390 (0.5 microM), but not by the D2 antagonist metoclopramide (0.5 microM). Higher concentrations of forskolin (10-40 microM) augmented stimulus-evoked [3H]GABA release directly, whereas dibutyryl cyclic AMP (100-200 microM) depressed it. Apomorphine, noradrenaline, and 5-hydroxytryptamine (1-40 microM) had no effect. The D2 stimulants lisuride, RU 24213, LY 171555, and bromocriptine dose-dependently inhibited depolarisation-induced but not basal [3H]GABA outflow. These inhibitory responses were not modified by the additional presence of SKF 38393 (10 microM) or SCH 23390 (1 microM), or by injection of 6-hydroxydopamine into the medial forebrain bundle 42 days earlier, but were attenuated by metoclopramide (0.5 microM). Higher amounts (10 microM) of SCH 23390, metoclopramide, or other D2 antagonists (loxapine, haloperidol) reduced evoked GABA release by themselves, probably by nonspecific mechanisms. These results suggest D1 and D2 receptors may have opposing effects on nigral GABA output and could explain the variable effects of mixed D1/D2 dopaminomimetics in earlier release and electrophysiological experiments.  相似文献   

18.
As shown by autoradiography, peripheral injections of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induced a dose-dependent decrease of [3H]SCH 23390 and [3H]prazosin high-affinity binding sites in the rat prefrontal cortex. EEDQ showed similar efficacy in inactivating cortical and striatal dopamine (DA) D1 receptors, whereas prazosin-sensitive alpha 1-adrenergic receptors were more sensitive to the action of the alkylating agent, as for all doses of EEDQ tested (from 0.8 to 3 mg/kg, i.p.), the decrease in cortical [3H]SCH 23390 binding was less pronounced than that of [3H]prazosin. The effects of EEDQ on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity were then simultaneously compared in individual rats. In the striatum, whatever the dose of EEDQ used, the decrease of DA-sensitive adenylate cyclase activity was always lower than that of D1 binding sites, suggesting the occurrence of a large proportion of spare D1 receptors. In the prefrontal cortex, a significant increase in DA-sensitive adenylate cyclase activity was observed in rats treated with a low dose of EEDQ (0.8 mg/kg), this effect being associated with a slight reduction in [3H]SCH 23390 binding sites (-20%). Parallel decreases in the enzyme activity and D1 binding sites were observed with higher doses. The EEDQ-induced supersensitivity of DA-sensitive adenylate cyclase did not occur in rats in which the decrease in [3H]prazosin binding sites was higher than 35%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Focal, limbic seizures were produced by systemically administered pilocarpine (200 mg/kg, i.p.); as previously described this dose produces limbic stereotypies but neither convulsions nor seizure-related brain damage. The pretreatment, 5 minutes prior pilocarpine, with the D-1 agonist SKF 38393 (-ED50 = 1 mg/kg; i.p.) induced convulsions similar to those produced by a higher, convulsant dose of pilocarpine. On the other hand, the pretreatment with the D-2 agonist LY 171555 failed to induce convulsions. The D-1 receptor antagonist SCH 23390 prevented the convulsions induced by SKF 38393 plus pilocarpine (200 mg/kg). This study indicates that D-1, but not D-2, receptor stimulation converts subconvulsant doses of pilocarpine into convulsant ones.  相似文献   

20.
J Arnt 《Life sciences》1988,42(5):565-574
The dopamine D-1 agonist SK&F 38393 (10 mg/kg) the D-2 agonist (-)-NPA (0.04 mg/kg) and d-amphetamine (1.0 mg/kg) were established as discriminative stimuli versus saline in rats. The stimulus induced by SK&F 38393 was stereoselective, since the R-(+)-, but not the S-(-)-enantiomer was effective. It was mimicked by two partial D-1 agonists with central effects, SK&F 75670 and Lu 24-040, but not by the peripheral agonist fenoldopam. D-2 agonists and d-amphetamine were ineffective. The effect of SK&F 38393 was antagonized by SCH 23390, but not by its inactive enantiomer SCH 23388 or by the D-2 antagonist YM 09151-2. The (-)-NPA stimulus was dependent on postsynaptic D-2 receptors: It was mimicked by quinpirole and pergolide in stimulant dosages, whereas the partial D-2 agonist (-)-3-PPP inhibited the effect of (-)-NPA. The dopamine synthesis inhibitor alpha-methyl-p-tyrosine did not antagonize the effect of (-)-NPA. Likewise, the above-mentioned D-1 agonists produced saline responding. D-amphetamine produced partial substitution to (-)-NPA. The (-)-NPA stimulus was blocked by YM 09151-2, but not by SCH 23390. In d-amphetamine-trained rats, quinpirole, (-)-NPA and pergolide produced generalization, whereas SK&F 38393 was ineffective. Both SCH 23390 and YM 09151-2 antagonized the effect of d-amphetamine. It is concluded that the cues induced by SK&F 38393 and (-)-NPA are mediated by separate D-1 and D-2 sites, whereas both sites contribute to the effect of d-amphetamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号