首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr-DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA-Cr-protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr-DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr-DNA adducts processed by NER, the incision of CrCl(3) [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl(3)) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 microM we observed approximately 2 Cr(III)-DNA adducts per plasmid. At this same concentration of Cr(III) we found that approximately 17% of the plasmid DNA contained ICLs ( approximately 0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 microM) was incubated with Bca UvrABC we observed approximately 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)-DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.  相似文献   

2.
Intracellular reduction of carcinogenic Cr(VI) leads to the extensive formation of Cr(III)-DNA phosphate adducts. Repair mechanisms for chromium and other DNA phosphate-based adducts are currently unknown in human cells. We found that nucleotide excision repair (NER)-proficient human cells rapidly removed chromium-DNA adducts, with an average t((1/2)) of 7.1 h, whereas NER-deficient XP-A, XP-C, and XP-F cells were severely compromised in their ability to repair chromium-DNA lesions. Activation of NER in Cr(VI)-treated human fibroblasts or lung epithelial H460 cells was manifested by XPC-dependent binding of the XPA protein to the nuclear matrix, which was also observed in UV light-treated (but not oxidant-stressed) cells. Intracellular replication of chromium-modified plasmids demonstrated increased mutagenicity of binary Cr(III)-DNA and ternary cysteine-Cr(III)-DNA adducts in cells with inactive NER. NER deficiency created by the loss of XPA in fibroblasts or by knockdown of this protein by stable expression of small interfering RNA in H460 cells increased apoptosis and clonogenic death by Cr(VI), providing genetic evidence for the role of monofunctional chromium-DNA adducts in the toxic effects of this metal. The rate of NER of chromium-DNA adducts under saturating conditions was calculated to be approximately 50,000 lesions/min/cell. Because chromium-DNA adducts cause only small changes in the DNA helix, rapid repair of these modifications in human cells indicates that the presence of major structural distortions in DNA is not required for the efficient detection of the damaged sites by NER proteins in vivo.  相似文献   

3.
The reactive species produced by the reduction of Cr(VI), particularly Cr(III), can form both ionic and coordinate covalent complexes with DNA. These Cr(III)-DNA interactions consist of Cr-DNA monoadducts, Cr-DNA ternary adducts, and Cr-DNA interstrand cross-links (Cr-ICLs), the latter of which are DNA polymerase arresting lesions (PALs). We sought to determine the impact of Cr-DNA interactions on the formation of replication blocking lesions in S. cerevisiae using a PCR-based method. We found that target sequence (TS) amplification using DNA isolated from Cr(VI)-treated yeast actually increased as a function of Cr(VI) concentration. Moreover, the enhanced TS amplification was reproduced in vitro using Cr(III)-treated DNA. In contrast, PCR amplification of TS from DNA isolated from yeast exposed to equitoxic doses of the inorganic DNA cross-linking agent cisplatin (CDDP), was decreased in a concentration-dependent manner. This paradox suggested that a specific Cr-DNA interaction, such as an ionic Cr-DNA complex, was responsible for the enhanced TS amplification, thereby masking the replication-blocking effect of certain ternary Cr-DNA adducts (i.e. interstrand cross-links). To test this possibility, we removed ionically associated Cr from the DNA using salt extraction prior to PCR analysis. This procedure obviated the increased amplification and revealed a dose-dependent decrease in TS amplification and an increase in Cr-PALs. These data from DNA analyzed ex vivo after treatment of intact cells indicate that ionic interactions of Cr with DNA result in increased DNA amplification whereas coordinate-covalent Cr-DNA complexes lead to formation of Cr-PALs. Thus, these results suggest that treatment of living cells with Cr(VI) leads to two modes of Cr-binding, which may have conflicting effects on DNA replication.  相似文献   

4.
Reduction of carcinogenic Cr(VI) by vitamin C generates ascorbate-Cr(III)-DNA cross-links, binary Cr(III)-DNA adducts, and can potentially cause oxidative DNA damage by intermediate reaction products. Here, we examined the mutational spectrum and the importance of different forms of DNA damage in genotoxicity and mutagenicity of Cr(VI) activated by physiological concentrations of ascorbate. Reduction of Cr(VI) led to a dose-dependent formation of both mutagenic and replication-blocking DNA lesions as detected by propagation of the pSP189 plasmids in human fibroblasts. Disruption of Cr-DNA binding abolished mutagenic responses and normalized the yield of replicated plasmids, indicating that Cr-DNA adducts were responsible for both mutagenicity and genotoxicity of Cr(VI). The absence of DNA breaks and abasic sites confirmed the lack of a significant production of hydroxyl radicals and Cr(V)-peroxo complexes in Cr(VI)-ascorbate reactions. Ascorbate-Cr(III)-DNA cross-links were much more mutagenic than smaller Cr(III)-DNA adducts and accounted for more than 90% of Cr(VI) mutagenicity. Ternary adducts were also several times more potent in the inhibition of replication than binary complexes. The Cr(VI)-induced mutational spectrum consisted of an approximately equal number of deletions and G/C-targeted point mutations (51% G/C --> T/A and 30% G/C --> A/T). In Escherichia coli cells, Cr(VI)-induced DNA adducts were only highly genotoxic but not mutagenic under either normal or SOS-induced conditions. Lower toxicity and high mutagenicity of ascorbate-Cr(III)-DNA adducts in human cells may result from the recruitment of an error-prone bypass DNA polymerase(s) to the stalled replication forks. Our results suggest that phosphotriester-type DNA adducts could play a more important role in human than bacterial mutagenesis.  相似文献   

5.
The genotoxicity associated with the metabolic reduction of hexavalent chromium [Cr(VI)] is complex and can impede DNA polymerase-mediated replication in vitro. The exact biochemical nature of Cr-induced polymerase arresting lesions (PALs) is not understood, but is believed to involve the formation of Cr-DNA interstrand cross-links (ICLs). The aim of this investigation was to determine the dependence of direct Cr-DNA interactions on the development of PALs in DNA treated with trivalent Cr [Cr(III)] or with Cr(VI) in the presence of ascorbic acid (Asc), a major intracellular reductant, using an in vitro, acellular system. The formation of Cr-DNA adducts, ICLs, and PALs was maximal at Asc:Cr(VI) molar ratios of 0.5-2, but gradually decreased at higher ratios. EDTA, a Cr(III) chelator, significantly decreased Cr-DNA binding and ICL and PAL formation. Co-treatment of DNA with Cr(VI)/Asc and mannitol, a Cr(V) chelator, selectively inhibited the formation of mono/bifunctional DNA adducts and PALs produced by Cr(VI) reduction, but had no effect on Cr(III)-DNA binding or Cr(III)-induced polymerase arrest. Blocking Cr-DNA phosphate interaction by preincubation of DNA with MgCl(2) abrogated DNA binding and ICL and PAL production. DNA strand breaks and abasic sites may lead to the in vitro arrest of DNA polymerases; however, we failed to detect significant increases in the frequency of these lesions following Cr(VI)/Asc treatment. These data indicate that the bifunctional adduction of Cr to DNA phosphates (ICLs) constitutes a major PAL. Furthermore, the generation of DNA strand breaks and abasic sites by Cr(VI) reduction is insufficient to explain PALs observed in vitro.  相似文献   

6.
Hu W  Feng Z  Tang MS 《Biochemistry》2004,43(44):14282-14289
Chromium(VI) [Cr(VI)], a ubiquitous environmental contaminant, is a well-known carcinogen to both humans and experimental animals, although it is a weak mutagen by itself. Occupational exposure to Cr(VI) is strongly associated with a high incidence of lung cancer, but the underlying mechanisms remain unclear. Tobacco smoking is the major cause of lung cancer, and polycyclic aromatic hydrocarbons (PAHs) in tobacco smoke are the major etiological agents. Since humans are frequently exposed to both Cr(VI) and PAHs, it is possible that Cr(VI) and PAHs have a synergistic effect on mutagenecity and cytotoxicity that contributes to the high incidence of lung cancer associated with exposure to both agents. In this study, we tested this possibility by determining the effect of Cr(VI) exposure on (+/-)-anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE, an active metabolite of PAHs) induced cytotoxicity, mutagenicity, and DNA adduct formation in Chinese hamster ovary (CHO) cells. Using the adenine phosphoribosyltransferase (APRT(+)) --> APRT(-) forward mutation assay, we found that while Cr(VI) alone induced low mutation frequency, it greatly enhanced BPDE-induced mutations in nucleotide excision repair (NER)-proficient CHO cells. Cr(VI) exposure also greatly enhanced BPDE-induced killing in NER-proficient cells. It is known that the cytotoxicity and mutagenicity of BPDE are mainly caused by the formation of DNA adduct, which are removed by NER. To test the possibility that the enhancement of cytotoxicity and mutagenicity by Cr(VI) is caused by the inhibition of NER, NER-deficient cells were used, and the enhancement effects of Cr(VI) were not observed in those cells. We further found that while Cr(VI) exposure does not change the total BPDE-DNA adduct formation, it significantly inhibited the repair of BPDE-DNA adducts from genomic DNA in NER-proficient cells. Using a host cell reactivation assay, we found that the repair of BPDE-DNA adduct in a luciferase reporter gene is greatly inhibited after Cr(VI) exposure in NER-proficient cells while not in NER-deficient cells. Together these results clearly demonstrate that Cr(VI) exposure can greatly enhance the mutagenicity and cytotoxicity of PAHs by inhibiting the cellular NER pathway, and this may constitute an important mechanism for Cr(VI)-induced human carcinogenesis.  相似文献   

7.
Reductive activation of carcinogenic Cr(VI) is required for the induction of DNA damage and mutations. Here, we examined the formation of Cr-DNA adducts in the reactions of Cr(VI) with its dominant biological reducer, vitamin C (ascorbate). Reductive conversion of Cr(VI) to Cr(III) by ascorbate produced stable Cr-DNA adducts, of which approximately 25% constituted ascorbate-Cr(III)-DNA cross-links. No evidence was found for the involvement of Cr(V) or Cr(IV) intermediates in the formation of either binary or ternary adducts. The cross-linking reaction was consistent with the attack of DNA by transient Cr(III)-ascorbate complexes. The yield of Cr(III)-DNA adducts was similar on dsDNA and AGT, ACT, or CT oligonucleotides and was strongly inhibited by Mg(2+), suggesting predominant coordination of Cr(III) to DNA phosphate oxygens. We also detected cross-linking of ascorbate to DNA in Cr(VI)-exposed human lung A549 cells that were preincubated with dehydroascorbic acid to create normal levels of intracellular ascorbate. Ascorbate-Cr-DNA cross-links accounted for approximately 6% of the total Cr-DNA adducts in A549 cells. Shuttle-vector experiments showed that ascorbate-Cr-DNA cross-links were mutagenic in human cells. Our results demonstrate that in addition to reduction of Cr(VI) to DNA-reactive Cr(III), vitamin C contributes to the genotoxicity of Cr(VI) via a direct chemical modification of DNA. The absence of Asc in A549 and other human cultured cells indicates that cells maintained under the usual in vitro conditions lack the most important reducing agent for Cr(VI) and would primarily display slow thiol-dependent activation of Cr(VI).  相似文献   

8.
Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr–DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA–Cr–protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr–DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr–DNA adducts processed by NER, the incision of CrCl3 [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl3) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 μM we observed 2 Cr(III)–DNA adducts per plasmid. At this same concentration of Cr(III) we found that 17% of the plasmid DNA contained ICLs (0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 μM) was incubated with Bca UvrABC we observed 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)–DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.  相似文献   

9.
Intracellular reduction of carcinogenic Cr(VI) generates Cr-DNA adducts formed through the coordination of Cr(III) to DNA phosphates (phosphotriester-type adduct). Here, we examined the role of Cr(III)-DNA adducts in mutagenesis induced by metabolism of Cr(VI) with cysteine. Reduction of Cr(VI) caused a strong oxidation of 2', 7'-dichlorofluoroscin (DCFH) and extensive Cr-DNA binding but no DNA breakage. Cr-DNA adducts induced unwinding of supercoiled plasmids and structural distortions in the DNA helix as detected by decreased ethidium bromide binding. Propagation of Cr-treated pSP189 plasmids in human fibroblasts led to a dose-dependent formation of the supF mutants and inhibition of replication. Blocking of Cr(III)-DNA binding by occupation of DNA phosphates with Mg(2+) or by sequestration of Cr(III) by inorganic phosphate or EDTA eliminated mutagenic responses and restored a normal yield of replicated plasmids. Dissociation of Cr(III) from DNA by a phosphate-based reversal procedure returned mutation frequency to background levels. The mutagenic responses at the different phases of the reduction reaction were unrelated to the amount of reduced Cr(VI) but reflected the number and the spectrum of Cr(III)-DNA adducts that were formed. Ternary cysteine-Cr(III)-DNA adducts were approximately 4-5 times more mutagenic than binary Cr(III)-DNA adducts. Although intermediate reaction products (CrV/IV, thiyl radicals) were capable of oxidizing DCFH, they were insufficiently reactive to damage DNA. Single-base substitutions at G/C pairs were the predominant type of Cr-induced mutations. The majority of mutations occurred at the sites where G had adjacent purine in the 3' or 5' position. Overall, our results present the first evidence that Cr(III)-DNA adducts play the dominant role in the mutagenicity caused by the metabolism of Cr(VI) by a biological reducing agent.  相似文献   

10.
Chromium(VI) is a toxic and carcinogenic metal that causes the formation of DNA phosphate-based adducts. Cr-DNA adducts are genotoxic in human cells, although they do not block replication in vitro. Here, we report that induction of cytotoxicity in Cr(VI)-treated human colon cells and mouse embryonic fibroblasts requires the presence of all major mismatch repair (MMR) proteins. Cr-DNA adducts lost their ability to block replication of Cr-modified plasmids in human colon cells lacking MLH1 protein. The presence of functional mismatch repair caused induction of p53-independent apoptosis associated with activation of caspases 2 and 7. Processing of Cr-DNA damage by mismatch repair resulted in the extensive formation of gamma-H2AX foci in G(2) phase, indicating generation of double-stranded breaks as secondary toxic lesions. Induction of gamma-H2AX foci was observed at 6 to 12 h postexposure, which was followed by activation of apoptosis in the absence of significant G(2) arrest. Our results demonstrate that mismatch repair system triggers toxic responses to Cr-DNA backbone modifications through stress mechanisms that are significantly different from those for other forms of DNA damage. Selection for Cr(VI) resistant, MMR-deficient cells may explain the very high frequency of lung cancers with microsatellite instability among chromate workers.  相似文献   

11.
Pierisin-1, a cytotoxic protein from the cabbage butterfly (Pieris rapae), induces apoptosis in mammalian cell lines. Binding of its C-terminal region to glycosphingolipid Gb3 and Gb4 receptors on cell membrane is necessary for incorporation into cells, while the N-terminal polypeptide catalyzes transfer of the ADP-ribose moiety of NAD at N2 of dG in DNA. Resulting DNA adducts cause mutation if they are present at low levels. If the DNA damage is more severe, the cells undergo apoptosis. In the present study, we examined the repair system for ADP-ribosylated dG adducts using nucleotide excision repair (NER) mutants of Chinese hamster ovary (CHO) cell lines. Pierisin-1 showed cytotoxic effects in all cases: IC50 values of them were; 650 ng/ml for AA8 (wild), 230 ng/ml for UV5, 190 ng/ml for UV20, 260 ng/ml for UV41, and 240 ng/ml for UV135. Thus, wild-type AA8 proved most resistant to pierisin-1-induced cytotoxicity. When these CHO cell lines were treated with pierisin-1, the adduct levels of ADP-ribosylated dG increased to 2.5-4.8/10(5) nucleotides time-dependently in all cell lines at 12 h. After removal of pierisin-1, the adduct levels remained constant or increased to 4-14/10(5) nucleotides in all NER mutant cells (UV5, UV20, UV41, UV135), while those rapidly decreased to 0.27/10(5) nucleotides in the repair proficient AA8 cells for 24 h. From these results, it is suggested that the NER system is involved in the repair of ADP-ribosylated dG adducts in DNA.  相似文献   

12.
Bryant HE  Ying S  Helleday T 《Mutation research》2006,599(1-2):116-123
Chromium is a potent human carcinogen, probably because of its well-documented genotoxic effects. Chromate (Cr[VI]) causes a wide range of DNA lesions, including DNA crosslinks and strand breaks, presumably due to the direct and indirect effects of DNA oxidation. Homologous recombination repair (HRR) is important for error-free repair of lesions occurring at replication forks. Here, we show that HR deficient cell lines irs1SF and V-C8, deficient in XRCC3 and BRCA2, respectively, are hypersensitive to Cr[VI], implicating this repair pathway in repair of Cr[VI] damage. Furthermore, we find that Cr[VI] causes DNA double-strand breaks and triggers both Rad51 foci formation and induction of HRR. Collectively, these data suggest that HRR is important in repair of Cr[VI]-induced DNA damage. In addition, we find that ERCC1, XRCC1 and DNA-PKcs defective cells are hypersensitive to Cr[VI], indicating that several repair pathways cooperate in repairing Cr[VI]-induced DNA damage.  相似文献   

13.
14.
Deficient DNA repair capacity is associated with genetic lesions accumulation and susceptibility to carcinogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate various cellular pathways including DNA repair. Here we hypothesized that the existence of HBV products may interfere with cellular nucleotide excision repair (NER) through microRNA-mediated gene regulation. We found that NER was impaired in HepG2.2.15 cells, a stable HBV-expressing cell line, compared with its parental cell line HepG2. Altered miRNA expression profile, in particular the significant upregulation of miR-192, was observed in HepG2.2.15 cells. Additionally, ERCC3 and ERCC4, two key factors implicated in NER, were identified as targets of miR-192 and over-expressing miR-192 significantly inhibited cellular NER. These results indicated that persistent HBV infection might trigger NER impairment in part through upregulation of miR-192, which suppressed the levels of ERCC3 and ERCC4. It provides new insight into the effect of chronic HBV infection on NER and genetic instability in cancer.  相似文献   

15.
DNA damage caused by oxygen alkylation of bases (mainly at O6-G, O4-T and O2-T positions in DNA) has been correlated with the mutagenic and carcinogenic potency of monofunctional alkylating agents. In all kinds of organisms, repair of O6-alkylG is carried out mainly by the enzyme O6-methyl guanine-DNA methyltransferase (MGMT). However, little is known about the repair of the O-alkylT adducts or about the contribution of nucleotide excision repair (NER) to this process, especially in higher eukaryotes. To study the influence of the NER system on the repair of O-alkylation damage, the molecular mutation spectrum induced by N-ethyl-N-nitrosourea (ENU) in an NER-deficient Drosophila strain, carrying a mutation at the mus201 locus, was obtained and compared with a previously published spectrum for NER-proficient conditions. This comparison reveals a clear increase in the frequency of base pair changes, including GC --> AT and AT --> GC transitions and AT --> TA transversions. In addition, one deletion and two frameshift mutations, not found under NER-proficient conditions, were isolated in the NER-deficient mutant. The results demonstrate that: (1) N-alkylation damage contributes considerably (more than 20%) to the mutagenic activity of ENU under NER-deficient conditions, confirming that the NER system repairs this kind of damage; and (2) that in germ cells of Drosophila in vivo, NER seems to repair O6-ethylguanine and/or O2-ethylcytosine, O4-ethylthymine, and possibly also O2-ethylthymine.  相似文献   

16.
ABSTRACT: BACKGROUND: Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. FINDINGS: The median (P25-P75) of Olive tail moment was 0.93 (0.58-1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46-1.35) for GA heterozygote and 0.50 (0.43-0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44-1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15-0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. CONCLUSION: The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage.  相似文献   

17.
The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER complexes. We have investigated an essential protein-protein interaction of the NER pathway, the binding of the XPA protein to the ERCC1 subunit of the repair endonuclease ERCC1-XPF. The structure of ERCC1 in complex with an XPA peptide shows that only a small region of XPA interacts with ERCC1 to form a stable complex exhibiting submicromolar binding affinity. However, this XPA peptide is a potent inhibitor of NER activity in a cell-free assay, blocking the excision of a cisplatin adduct from DNA. The structure of the peptide inhibitor bound to its target site reveals a binding interface that is amenable to the development of small molecule peptidomimetics that could be used to modulate NER repair activities in vivo.  相似文献   

18.
Nitric oxide (NO) induces deamination of guanine, yielding xanthine and oxanine (Oxa). Furthermore, Oxa reacts with polyamines and DNA binding proteins to form cross-link adducts. Thus, it is of interest how these lesions are processed by DNA repair enzymes in view of the genotoxic mechanism of NO. In the present study, we have examined the repair capacity for Oxa and Oxa–spermine cross-link adducts (Oxa–Sp) of enzymes involved in base excision repair (BER) and nucleotide excision repair (NER) to delineate the repair mechanism of nitrosative damage to guanine. Oligonucleotide substrates containing Oxa and Oxa–Sp were incubated with purified BER and NER enzymes or cell-free extracts (CFEs), and the damage-excising or DNA-incising activity was compared with that for control (physiological) substrates. The Oxa-excising activities of Escherichia coli and human DNA glycosylases and HeLa CFEs were 0.2–9% relative to control substrates, implying poor processing of Oxa by BER. In contrast, DNA containing Oxa–Sp was incised efficiently by UvrABC nuclease and SOS-induced E.coli CFEs, suggesting a role of NER in ameliorating genotoxic effects associated with nitrosative stress. Analyses of the activity of CFEs from NER-proficient and NER-deficient human cells on Oxa–Sp DNA confirmed further the involvement of NER in the repair of nitrosative DNA damage.  相似文献   

19.
Cisplatin is a highly potent cytotoxic and genotoxic agent used in the chemotherapy of various types of tumors. Its cytotoxic effect is supposed to be due to the induction of intra- and interstrand DNA cross-links which are repaired via the nucleotide excision repair (NER) pathway. Here, we elucidated the mechanism of cisplatin-induced cytotoxicity in mutants derived from CHO-9 cells defective in NER. We compared 43-3B and 27-1 cells deficient for ERCC1 and ERCC3, respectively, with the corresponding wild-type and ERCC1 complemented 43-3B cells. It is shown that cells defective in ERCC1 are more sensitive than cells defective in ERCC3 with regard to cisplatin-induced reproductive cell death. ERCC1 and ERCC3 mutants showed a higher frequency of apoptosis and, to a lesser degree, necrosis compared to repair proficient cells. Induction of apoptosis in both ERCC1 and ERCC3 defective cells was accompanied by decline in Bcl-2 protein level, activation of caspases 8, 9 and 3 and poly(ADP-ribose)polymerase (PARP) cleavage. Since the mutant cells are defective in the repair of cisplatin-induced DNA lesions, the data demonstrate that non-repaired cisplatin-induced DNA adducts act as a trigger of the mitochondrial apoptotic pathway by down-regulation of Bcl-2 followed by caspase activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号