首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We performed “no‐choice” tests to study the host range of the parasitoid Allotropa burrelli (Muesebeck) (Hymenoptera: Platygastridae) for use against the Comstock mealybug, Pseudococcus comstocki (Kuwana) (Hemiptera: Pseudococcidae), in Southern France. We tested three Pseudococcidae species as potential non‐target hosts: two species from the same genus (Pseudococcus longispinus and Pseudococcus viburni) and Planococcus citri. Allotropa burrelli did not parasitize any of the non‐target mealybug species tested. No attempt of oviposition was recorded for the three species tested during the first 20 min of parasitoid release and no parasitism occurred in 6–8 hr of exposure of the mealybugs to the parasitoid.  相似文献   

3.
Tight interactions between unrelated organisms such as is seen in plant-insect, host-parasite, or host-symbiont associations may lead to speciation of the smaller partners when their hosts speciate. Totally congruent phylogenies of interacting taxa have not been observed often but a number of studies have provided evidence that various hemipteran insect taxa and their primary bacterial endosymbionts share phylogenetic histories. Like other hemipterans, mealybugs (Pseudococcidae) harbour multiple intracellular bacterial symbionts, which are thought to be strictly vertically inherited, implying codivergence of hosts and symbionts. Here, robust estimates of phylogeny were generated from four fragments of three nuclear genes for mealybugs of the subfamily Pseudococcinae, and a substantial fragment of the 16S-23S rDNA of their P-endosymbionts. Phylogenetic congruence was highly significant, with 75% of nodes on the two trees identical, and significant correlation of branch lengths indicated coincident timing of cladogenesis. It is suggested that the low level of observed incongruence was influenced by uncertainty in phylogenetic estimation, but evolutionary outcomes other than congruence, including host shifts, could not be rejected.  相似文献   

4.
We previously discovered that (2,4,4‐trimethyl‐2‐cyclohexenyl)‐methyl butyrate (cyclolavandulyl butyrate, CLB) is an attractant for the mealybug‐parasitic wasp Anagyrus sawadai Ishii (Hymenoptera: Encyrtidae: Anagyrini). This wasp is not likely to parasitize the Japanese mealybug, Planococcus kraunhiae (Kuwana) (Hemiptera: Pseudococcidae), under natural conditions. In this study, we showed that this ‘non‐natural’ enemy wasp can parasitize P. kraunhiae in the presence of CLB in field experiments. Laboratory‐reared mealybugs placed on persimmon trees with CLB‐impregnated rubber septa were parasitized significantly more often by endoparasitic wasps than those on non‐treatment trees (18.1–40.3 vs. 0–6.3%). Anagyrus sawadai accounted for 20% of the wasps that emerged from mealybugs placed on CLB‐treated trees. Moreover, CLB attracted another minor parasitoid, Leptomastix dactylopii Howard (Hymenoptera: Encyrtidae: Anagyrini), which also parasitized more P. kraunhiae in the presence of CLB. All wasps that emerged from the mealybugs on control trees were Anagyrus fujikona Tachikawa, a major parasitoid of P. kraunhiae around the test location. These results demonstrated that CLB can recruit an indigenous, but ‘non‐natural’ enemy that does not typically attack P. kraunhiae under natural conditions, as well as a minor natural enemy, for biological control of this mealybug species.  相似文献   

5.
Previous allozyme and DNA nucleotide sequence studies of the mealybug genus Ferrisia Fullaway (Hemiptera: Pseudococcidae), although limited, have suggested greater species diversity than is recognized by the current morphology‐based taxonomy. Here we analyse nucleotide sequence data from one mitochondrial (cytochrome oxidase I) and two nuclear (EF‐1α and 28S D2D3) genes and recover ten well‐supported groups that allow us to reassess the taxonomic utility of morphological characters used for species recognition. We report on previously used morphological characters for which states are highly variable within genetic groups and identify new characters (of the wax‐exuding cuticular ducts and pores) with taxonomically informative states. The widespread pest species F. virgata (Cockerell), commonly called the striped mealybug, should be diagnosed more narrowly. From samples identified as F. virgata, we recover six clades that we equate with species and that can be distinguished with the newly identified morphological characters. We determine that five of the ‘electrophoretic species' identified informally by the late Uzi Nur based on electrophoretic mobility of 20 enzymes correlate with four of our genetic groups. This matching of Nur's putative species with ours was possible only because some of Nur's slide‐mounted voucher specimens were deposited in a museum and thus available for morphological study. Species confused with F. virgata are either new to science or were placed erroneously in synonymy with F. virgata by earlier authors: they will be described elsewhere. The most important characters of the adult female for distinguishing these species from F. virgata are the positions and characteristics of minute discoidal pore(s) associated both with the ventral oral‐collar tubular ducts and with the sclerotized area surrounding each dorsal enlarged tubular duct, and the number of sizes of the ventral oral‐collar tubular ducts. In addition, we determine that adult females of F. gilli Gullan from different populations on different host plants vary substantially in the number and size of clusters of small ventral oral‐collar ducts on the body margins – features previously suspected to indicate distinct species.  相似文献   

6.
Intraguild predation of the mealybug parasitoids Anagyrus pseudococci (Girault), and Leptomastix dactylopii Howard (Hymenoptera: Encrytidae) by Nephus kreissli Fürsch & Uygun (Coleoptera: Coccinellidae) was studied. The latter is a native predator of the important pest Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) on grapevines in Turkey. For this purpose, P. ficus of different ages parasitised by A. pseudococci or L. dactylopii, or by both A. pseudococci and L. dactylopii, were served to fourth instars and adults of N. kreissli as food. Experiments were conducted using two different treatments: no-choice (served unparasitised or only one stage of parasitised mealybug) and choice (served unparasitised and only one age of parasitised mealybug together), under controlled environmental conditions. Both fourth instars and adult predators were fed on two- and four-day-old mealybugs parasitised by A. pseudococci or on two-, four- and six-day-old mealybugs parasitised by L. dactylopii or by either A. pseudococci or L. dactylopii. The predators could not consume six-day-old mealybugs parasitised by A. pseudococci, eight-day-old mealybugs parasitised by L. dactylopii, or those parasitised by either of these parasitoids which had become mummified. While it was found that the adult predators preferred parasitised mealybugs to unparasitised, the larvae did not show a pronounced preference between parasitised and unparasitised mealybugs (except for mealybugs parasitised by A. pseudococci).  相似文献   

7.
Abstract 1. The Argentine ant, Linepithema humile, tends honeydew‐excreting homopterans and can disrupt the activity of their natural enemies. This mutualism is often cited for increases in homopteran densities; however, the ant’s impact on natural enemies may be only one of several effects of ant tending that alters insect densities. To test for the variable impacts of ants, mealybug and natural enemy densities were monitored on ant‐tended and ant‐excluded vines in two California vineyard regions. 2. Ant tending increased densities of the obscure mealybug, Pseudococcus viburni, and lowered densities of its encyrtid parasitoids Pseudaphycus flavidulus and Leptomastix epona. Differences in parasitoid recovery rates suggest that P. flavidulus was better able to forage on ant‐tended vines than L. epona. 3. Densities of a coccinellid predator, Cryptolaemus montrouzieri, were higher on ant‐tended vines, where there were more mealybugs. Together with behavioural observations, the results showed that this predator can forage in patches of ant‐tended mealybugs, and that it effectively mimics mealybugs to avoid disturbance by ants. 4. Ant tending increased densities of the grape mealybug, Pseudococcus maritimus, by increasing the number of surviving first‐instar mealybugs. Parasitoids were nearly absent from the vineyard infested with P. maritimus. Therefore, ants improved either mealybug habitat or fitness. 5. There was no difference in mealybug distribution or seasonal development patterns on ant‐tended and ant‐excluded vines, indicating that ants did not move mealybugs to better feeding locations or create a spatial refuge from natural enemies. 6. Results showed that while Argentine ants were clearly associated with increased mealybug densities, it is not a simple matter of disrupting natural enemies. Instead, ant tending includes benefits independent of the effect on natural enemies. Moreover, the effects on different natural enemy species varied, as some species thrive in the presence of ants.  相似文献   

8.
Mealybugs (Hemiptera: Pseudococcidae) are pests constraining the international trade of Brazilian table grapes. They damage grapes by transmitting viruses and toxins, causing defoliation, chlorosis, and vigor losses and favoring the development of sooty mold. Difficulties in mealybug identification remain an obstacle to the adequate management of these pests. In this study, our primary aim was to identify the principal mealybug species infesting the major table grape-producing regions in Brazil, by morphological and molecular characterization. Our secondary aim was to develop a rapid identification kit based on species-specific Polymerase Chain Reactions, to facilitate the routine identification of the most common pest species. We surveyed 40 sites infested with mealybugs and identified 17 species: Dysmicoccus brevipes (Cockerell), Dysmicoccus sylvarum Williams and Granara de Willink, Dysmicoccus texensis (Tinsley), Ferrisia cristinae Kaydan and Gullan, Ferrisia meridionalis Williams, Ferrisia terani Williams and Granara de Willink, Phenacoccus baccharidis Williams, Phenacoccus parvus Morrison, Phenacoccus solenopsis Tinsley, Planococcus citri (Risso), Pseudococcus viburni (Signoret), Pseudococcus cryptus Hempel, four taxa closely related each of to Pseudococcus viburni, Pseudococcus sociabilis Hambleton, Pseudococcus maritimus (Ehrhorn) and Pseudococcus meridionalis Prado, and one specimen from the genus Pseudococcus Westwood. The PCR method developed effectively identified five mealybug species of economic interest on grape in Brazil: D. brevipes, Pl. citri, Ps. viburni, Ph. solenopsis and Planococcus ficus (Signoret). Nevertheless, it is not possible to assure that this procedure is reliable for taxa that have not been sampled already and might be very closely related to the target species.  相似文献   

9.
The mealybug parasitoid Anagyrus spec. nov near sinope (Hymenoptera: Encyrtidae) is an undescribed parasitoid of the Madeira mealybug, Phenacoccus madeirensis Green (Homoptera: Pseudococcidae). We investigated the preference of Anagyrus spec. nov near sinope for six developmental stadia (first‐ and second‐instar nymphs, third‐instar immature females, third‐ or fourth‐instar immature males, pre‐reproductive adult females, and ovipositing adult females) of P. madeirensis and the fitness consequences of the host stage selection behavior. In the no‐choice test, Anagyrus spec. nov near sinope parasitized and completed development in all host stadia except third‐instar immature males. When all host stadia were offered simultaneously, the parasitoids preferred third‐instar immature and pre‐reproductive adult females. Dissection of the stung mealybugs revealed that the clutch size (number of eggs per host) was approximately four and three in the third‐instar and pre‐reproductive females, respectively, and one egg per first‐instar nymph. Parasitoids emerged from P. madeirensis parasitized at third‐instar or pre‐reproductive adult female completed development in the shortest duration, achieved a higher progeny survival rate, larger brood and body size, and the lowest proportion of males. We showed that the continued development of mealybugs had significant influence on the fitness of the parasitoids. Although deposited as eggs in first‐ or second‐instar nymphs, parasitoids emerged from mummies that had attained third‐instar or adult development achieved similar progeny survival rate, brood size, body size, and sex ratio as those parasitoids deposited and developed in third‐instar or adult mealybugs. By delaying larval development in young mealybugs, Anagyrus spec. nov near sinope achieved higher fitness by allowing the parasitized mealybugs to grow and accumulate body size and resources. We suggest that the fitness consequence of host stage selection of a koinobiont parasitoid should be evaluated on both the time of parasitism and the time of mummification.  相似文献   

10.
The mealybug tribe Xenococcini (Hemiptera: Pseudococcidae) comprises three genera, Eumyrmococcus Silvestri, Neochavesia Williams & Granara de Willink and Xenococcus Silvestri, trophobiotically associated with ants of the genus Acropyga Roger (Hymenoptera: Formicidae). Alate Acropyga queens vertically transmit trophobionts by carrying them along on the nuptial flight, a unique behaviour termed trophophoresy. Xenococcine mealybugs have never been collected without ant associates, and putatively only associate with Acropyga. Xenococcine mealybugs are characterized by the absence of dorsal ostioles, presence of distally cup‐shaped circuli and a female pupal instar rather than a third feeding instar. The phylogeny of this tribe is derived for the first time using morphological data from adult females (53 characters) through Bayesian inference and maximum parsimony methods. Monophyly of the clade is strongly supported and a discussion of their taxonomy is included. The Neotropical genus Neochavesia was recovered as monophyletic. Eumyrmococcus, as previously defined, was recovered as paraphyletic, and thus two species are transferred to Xenococcus: Xenococcus kinomurai (Williams & Terayama) comb.n. and Xenococcus neoguineensis (Williams) comb.n . Two species groups are recognized within Eumyrmococcus: the Eumyrmococcus scorpioides species group, restricted to the eastern Mediterranean and Afrotropics, and the Eumyrmococcus smithii species group, restricted to the Orient and Indo‐Australasia. Six new species are described: Eumyrmococcus adornocapillus sp.n. from Australia; Eumyrmococcus sarnati sp.n. from Fiji; Eumyrmococcus ordinotersus sp.n. and Xenococcus baryglobosus sp.n. from the Solomon Islands; Neochavesia cephalonodus sp.n. from French Guiana; and Neochavesia linealuma sp.n. from Guyana. The systematics and biology of the xenococcine mealybugs is discussed in the context of obligate ant symbiosis.  相似文献   

11.
12.
Recently, several invasive mealybugs (Hemiptera: Pseudococcidae) have rapidly spread to Asia and have become a serious threat to the production of cotton including transgenic cotton. Thus far, studies have mainly focused on the effects of mealybugs on non-transgenic cotton, without fully considering their effects on transgenic cotton and trophic interactions. Therefore, investigating the potential effects of mealybugs on transgenic cotton and their key natural enemies is vitally important. A first study on the effects of transgenic cotton on a non-target mealybug, Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae) was performed by comparing its development, survival and body weight on transgenic cotton leaves expressing Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) with those on its near-isogenic non-transgenic line. Furthermore, the development, survival, body weight, fecundity, adult longevity and feeding preference of the mealybug predator Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) was assessed when fed F. virgata maintained on transgenic cotton. In order to investigate potential transfer of Cry1Ac and CpTI proteins via the food chain, protein levels in cotton leaves, mealybugs and ladybirds were quantified. Experimental results showed that F. virgata could infest this bivalent transgenic cotton. No significant differences were observed in the physiological parameters of the predator C. montrouzieri offered F. virgata reared on transgenic cotton or its near-isogenic line. Cry1Ac and CpTI proteins were detected in transgenic cotton leaves, but no detectable levels of both proteins were present in the mealybug or its predator when reared on transgenic cotton leaves. Our bioassays indicated that transgenic cotton poses a negligible risk to the predatory coccinellid C. montrouzieri via its prey, the mealybug F. virgata.  相似文献   

13.
Mealybugs and aphids are insects which damage grass species. The effects of fungal endophytes on the feeding of the mealybug, Phenococcus solani Ferris (Homoptera: Pseudococcidae), and barley aphid, Sipha maydis Passerini (Homoptera: Aphididae), on tall fescue, Festuca arundinacea Schreb. and meadow fescue, Festuca pratensis Huds., were studied under greenhouse conditions. Mealybugs preferred endophyte‐free (E–) clones over their endophyte‐infected (E+) counterparts. E+ plants had a significantly lower number of mealybugs than E– plants. A mixture of E+ and E– plants supported intermediate mealybug numbers, between pure plantings of E+ and E– grasses. Barley aphids released on to plant materials were deterred from feeding and could not persist on E+ plants. E– plants did not survive because of aphid damage, while E+ plants generally re‐grew, but were damaged to some degree. The results showed that the use of pure stands of endophyte‐infected grasses or a mixed stand of infected and non‐infected plants may increase the persistence and durability of turf and forage grass species in the presence of foliar damaging insects.  相似文献   

14.
Mutualistic interactions between ants and Hemiptera are mediated to a large extent by the amount and quality of sugar‐rich honeydew produced. Throughout the neotropics, the predaceous fire ant Solenopsis geminata (Fabricius) (Hymenoptera: Formicidae) is found in association with colonies of the pineapple mealybug, Dysmicoccus brevipes (Cockerell) (Hemiptera: Pseudococcidae), which they actively tend and protect from attack by natural enemies. In this study, we evaluate the effects of access to a sucrose solution on the mutualistic association between S. geminata and D. brevipes. Ten colonies of either species were established, with D. brevipes maintained on pumpkin, Cucurbita maxima Duchesne (Cucurbitaceae), in screen cages. Five of the S. geminata colonies were permitted access to vials with 20% sucrose solution and a pumpkin with 20 adult mealybugs. The remaining ant colonies were allowed access to mealybug‐infested pumpkins. Ant colonies with access to the sucrose solution attended mealybugs significantly less than those without additional sugar sources. Mealybug survival rates were similar under both treatments. Total body sugars and fructose were nearly twice as high in ants with access to honeydew and sucrose vs. those with access to honeydew and water. Fructose accumulated on the pumpkins over time in both treatments, suggesting that honeydew was not fully exploited by the ants. In conclusion, D. brevipes enjoy lower degrees of ant attendance when S. geminata have alternative sources of carbohydrates. We further discuss the significance of these findings for the conservation of predaceous ants and mealybug biological control.  相似文献   

15.
Vector transmission of Banana streak virus in the screenhouse in Uganda   总被引:2,自引:0,他引:2  
Although mealybug transmission of Banana streak virus.(BSV) by Planococcus citri and Saccharicoccus sacchar has been demonstrated elsewhere, these mealybugs have not been identified on bananas in Uganda and their role and that of other agents in BSV transmission is not well documented. Insect samples were collected from banana farms in sites with low, moderate and high BSV infections in Uganda. Subsequently, live mealybugs and aphids were again collected and used in acquisition, retention and transmission tests, and BSV diagnosed using TAS‐ELISA. Dysmicoccus brevipes (pineapple mealybug), S. sacchari (sugarcane mealybug) and Pentalonia nigronervosa (banana aphid) were the most abundant insect species from banana fields sampled. Abundance of D. brevipes was positively and significantly correlated with BSV incidence unlike that of. P. nigronervosa. Transmission studies in the screenhouse showed that mealybugs acquired BSV one day after feeding on virus sources and approached optimum acquisition after the third day. Pineapple and sugarcane mealybugs retained BSV up to 5 days from the day of transfer from the virus source. BSV was first detected in the recipient banana plants 4 wk after transmission using pineapple mealybug and 6 wk after inoculation using sugarcane mealybug. Under screenhouse conditions, both mealybugs therefore appear to transmit BSV semipersistently.  相似文献   

16.
Mealybugs (Hemiptera, Coccoidea, Pseudococcidae) are plant sap-sucking insects that have within their body cavities specialized cells containing prokaryotic primary endosymbionts (P-endosymbionts). The P-endosymbionts have the unusual property of containing within their cytoplasm prokaryotic secondary endosymbionts (S-endosymbionts) [C. D. von Dohlen, S. Kohler, S. T. Alsop, and W. R. McManus, Nature (London) 412:433-436, 2001]. Four-kilobase fragments containing 16S-23S ribosomal DNA (rDNA) were obtained from the P-endosymbionts of 22 mealybug species and the S-endosymbionts of 12 representative species. Phylogenetic analyses of the P-endosymbionts indicated that they have a monophyletic origin and are members of the β-subdivision of the Proteobacteria; these organisms were subdivided into five different clusters. The S-endosymbionts were members of the γ-subdivision of the Proteobacteria and were grouped into clusters similar to those observed with the P-endosymbionts. The S-endosymbiont clusters were distinct from each other and from other insect-associated bacteria. The similarity of the clusters formed by the P- and S-endosymbionts suggests that the P-endosymbionts of mealybugs were infected multiple times with different precursors of the S-endosymbionts and once the association was established, the P- and S-endosymbionts were transmitted together. The lineage consisting of the P-endosymbionts of mealybugs was given the designation “Candidatus Tremblaya” gen. nov., with a single species, “Candidatus Tremblaya princeps” sp. nov. The results of phylogenetic analyses of mitochondrial DNA fragments encoding cytochrome oxidase subunits I and II from four representative mealybug species were in agreement with the results of 16S-23S rDNA analyses, suggesting that relationships among strains of “Candidatus T. princeps” are useful in inferring the phylogeny of their mealybug hosts.  相似文献   

17.
To improve natural suppression of the obscure mealybug, Pseudococcus viburni (Signoret), the parasitoids Pseudaphycus flavidulus (Brèthes) and Leptomastix epona (Walker) (Hymenoptera: Encyrtidae) of Chilean origin were released in California's Central Coast vineyards from 1997 to 1999. A survey for parasitoids of P. viburni was conducted in the Edna Valley appellation wine grape region from 2005 to 2007, 6–8 years after classical biological control releases were discontinued. Two survey methods were used. First, field collections of obscure mealybugs from commercial vineyard blocks (2005–2007) and, second, placement of “sentinel mealybugs” on potted (1 L) grape vines (2006 only). From both survey methods, P. flavidulus was recovered, albeit levels of parasitism were low (less than 0.6%). We also placed longtailed mealybug, Pseudococcus longispinus (Targioni Tozzetti), on potted plants concurrent with placement of sentinel obscure mealybugs in the vineyard in order to measure parasitoid activity on this closely-related mealybug species. No P. flavidulus were recovered from P. longispinus. Other encyrtid parasitoids reared from either P. viburni or P. longispinus were Anagyrus pseudococci (Girault), Leptomastix dactylopii Howard, Leptomastidea abnormis (Girault), Coccidoxenoides perminutus Girault, and Tetracnemoidea peregrina (Compere). A hyperparasitoid, Chaetocerus sp., was also reared. The data are discussed with respect to biological control of vineyard mealybugs and newly developed controls for the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). Because Pseudaphycus species reared from mealybugs are superficially very similar a taxonomic key and discussion of host relationships for selected Pseudaphycus species are provided.  相似文献   

18.
Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of “squashed” whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.  相似文献   

19.
Basal divergences within Simuliidae are inferred from portions of the large nuclear ribosomal subunit (28S), elongation factor‐one alpha (EF‐1α), dopa decarboxylase (DDC), phosphoenolpyruvate carboxykinase (PEPCK), the small mitochondrial ribosomal subunit (12S) and subunit two of NADH dehydrogenase (ND2). Sequences from 28S and EF‐1α are presented for a thaumaleid, a chironomid and twenty‐five of the thirty‐two currently recognized simuliid genera. For DDC, PEPCK, 12S and ND2 the taxon sampling is less extensive, but includes both aforementioned outgroup taxa, Parasimulium Malloch, Simulium Latreille and genera representing each of the two to three major suprageneric taxa of various authors. Phylogenetic analyses of 28S, EF‐1α, PEPCK and DDC sequences yield strong support for the basal position of Parasimulium (Parasimuliinae) and division of the remaining simuliids (Simuliinae) into monophyletic sister taxa, Prosimuliini and Simuliini. These groupings are entirely concordant with those recovered in the most intensive analysis of morphological data.  相似文献   

20.
Irreversible thelytokous reproduction in Muscidifurax uniraptor   总被引:1,自引:0,他引:1  
Three encyrtid parasitoids Apoanagyrus (Epidinocarsis) diversicornis, Aenasius vexans, and Acerophagus coccois (Hymenoptera: Encyrtidae) are used to control the cassava mealybug Phenacoccus herreni Cox & Williams (Sternorrhyncha: Pseudococcidae), an important pest of cassava in South America. The influence of parasitism on the feeding behaviour of mealybugs was studied by observing honeydew secretion and by the electrical penetration graph technique (EPG, DC-system). Honeydew secretions were observed after parasitism until mummy transformation. No strong EPG parameter differences were found between parasitised and control insects. All results indicated that parasitised mealybugs keep feeding on the phloem sap after parasitism until mummy transformation. The main influence of parasitism on EPG parameters is the appearance of a new pattern resembling the E2 pattern at the extracellular level and labelled H. This pattern was also produced with control insects located on an unfavourable feeding site and could be associated with a stress response. It might be related to the still unclear E(c) pattern of aphids. The relationship of H to stylet activities is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号