首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Parenchyma cells ofMimosa pudica display close associations between two or more cisternae of the endoplasmic reticulum. These associations form simplified types of lamellar bodies in which inner paired lamellae have lost their ribonucleoprotein granules and are separated by a dense layer.  相似文献   

2.
The nucleotide sequence of hiC12, isolated as a cDNA clone of hardening-induced Chlorella (hiC) genes, was identified. The clone encodes a late embryogenesis abundant (LEA) protein having six repeats of a 11-mer amino acid motif, although in a slightly imperfect form. To overexpress the hiC61) and hiC12 genes, their coding regions were PCR amplified and subcloned into a pGEX-1lambdaT vector. The HIC6 and HIC12 proteins were expressed as GST fusion proteins in E. coli, then purified. The two HIC proteins were found to be effective in protecting a freeze-labile enzyme, LDH, against freeze-inactivation. On a molar concentration basis, they were about 3.1 x 10(6) times more effective in protecting LDH than sucrose and as effective as BSA. Cryoprotection tests with five kinds of chain-shortened polypeptides, synthesized based on the 11-mer amino acid motif of the HIC6 protein showed that the cryoprotective activity decreased with a decrease in the repeating units of the 11-mer motif. In fact, cryoprotective activities of three kinds of single 11-mer amino acids were very low even at high concentrations. All the results suggested that the sufficiently repeated 11-mer motif is required for the cryoprotective activities of Chlorella LEA proteins.  相似文献   

3.
Hsp40 co-chaperones, characterized by the presence of a highly conserved J domain, are involved in nearly all aspects of protein synthesis, folding, and secretion. Within the lumen of the endoplasmic reticulum, these chaperones are also involved in reverse translocation and degradation of misfolded proteins. We describe here the cloning and characterization of a novel Hsp40 chaperone, which we named HEDJ. Epitope-tagged HEDJ was demonstrated by confocal microscopy to be localized to the endoplasmic reticulum. Protease susceptibility, glycosidase treatment, and detergent solubility assays demonstrated that the molecule was luminally oriented and membrane-associated. In vitro experiments demonstrated that the J domain interacted with the endoplasmic reticulum-associated Hsp70, Bip, in an ATP-dependent manner and was capable of stimulating its ATPase activity. HEDJ mRNA expression was detected in all human tissues examined. Highly homologous sequences were found in mouse, Drosophila, and Caenorhabditis elegans data bases. These results suggest potential roles for HEDJ in protein import, folding, or translocation within the endoplasmic reticulum.  相似文献   

4.
Shao L  Sun X  Xu L  Young LT  Wang JF 《Life sciences》2006,78(12):1317-1323
The mood stabilizing drug lithium is a highly effective treatment for bipolar disorder. Previous studies in our laboratory found that chronic treatment with the mood stabilizing drug valproate in rat brain increased the expression of endoplasmic reticulum (ER) stress proteins GRP78, GRP94 and calreticulin. We report here that in primary cultured rat cerebral cortical cells, expression of GRP78, GRP94 and calreticulin are increased not only by valproate, but also by lithium after chronic treatment for 1 week at therapeutically relevant concentrations. However, two other mood stabilizing drugs carbamazepine and lamotrigine had no effect on expression of GRP78, GRP94 or calreticulin. Chronic treatment with lithium for 1 week increased both mRNA and protein levels of ER stress proteins. In contrast to a classic GRP78 inducer thapsigargin, an inhibitor of the ER Ca2+ -ATPase, chronic treatment with lithium or valproate for 1 week modestly increased GRP78 expression in neuronal cells, had no effect on basal intracellular free Ca2+ concentration and does not induce cell death. These results indicate that lithium and valproate may increase expression of GRP78, GRP94 and calreticulin in primary cultured rat cerebral cortical cells without causing cell damage. These results also suggest that the mechanism of GRP78 increase induced by lithium and valproate may be different from that of thapsigargin.  相似文献   

5.
In Parkinson's disease, oxidative stress is implicated in protein misfolding and aggregation, which may activate the unfolded protein response by the endoplasmic reticulum (ER). Dopamine (DA) can initiate oxidative stress via H2O2 formation by DA metabolism and by oxidation into DA quinone. We have previously shown that DA quinone induces oxidative protein modification, mitochondrial dysfunction in vitro, and dopaminergic cell toxicity in vivo and in vitro . In this study, we used cysteine- and lysine-reactive fluorescent dyes with 2D difference in-gel electrophoresis, mass spectrometry, and peptide mass fingerprint analysis to identify proteins in PC12 cell mitochondrial-enriched fractions that were altered in abundance following DA exposure (150 μM, 16 h). Quantitative changes in proteins labeled with fluorescent dyes indicated increases in a subset of proteins after DA exposure: calreticulin, ERp29, ERp99, Grp58, Grp78, Grp94 and Orp150 (149–260%), and decreased levels of aldolase A (39–42%). Changes in levels of several proteins detected by 2D difference in-gel electrophoresis were confirmed by western blot. Using this unbiased proteomics approach, our findings demonstrated that in PC12 cells, DA exposure leads to a cellular response indicative of ER stress prior to the onset of cell death, providing a potential link between DA and the unfolded protein response in the pathogenesis of Parkinson's disease.  相似文献   

6.
This communication examines the role of small heat shock proteins (sHsps) targeted to mitochondria (Mt) and endoplasmic reticulum (ER) in tomato plants (Lycopersicon esculentum Mill.) under heat stress. Genetic response of transgenic and wild type plants varied under optimum, moderately elevated and elevated temperature. In optimum temperature higher biomass was recorded in wild type than the transgenic lines, whereas in moderately elevated temperature biomass increased in Mt-sHsp line. Also, net photosynthetic rate (PN) increased in Mt-sHsp line in both the elevated temperatures, though higher in moderately elevated. Cell membrane stability (CMS) improved in all the lines after exposure to elevated temperatures, but always remained higher in transgenic lines. Transgenic lines expressed sHsps in different temperature regimes in both vegetative and reproductive parts, while wild type expressed such proteins only after 1 h of heat shock.  相似文献   

7.
In yeast, a sequence of physical and genetic interactions termed the endoplasmic reticulum (ER)–mitochondria organizing network (ERMIONE) controls mitochondria–ER interactions and mitochondrial biogenesis. Several functions that characterize ERMIONE complexes are conserved in mammalian cells, suggesting that a similar tethering complex must exist in metazoans. Recent studies have identified a new family of nuclear‐encoded ATPases associated with diverse cellular activities (AAA+‐ATPase) mitochondrial membrane proteins specific to multicellular eukaryotes, called the ATPase family AAA domain‐containing protein 3 (ATAD3) proteins (ATAD3A and ATAD3B). These proteins are crucial for normal mitochondrial–ER interactions and lie at the heart of processes underlying mitochondrial biogenesis. ATAD3A orthologues have been studied in flies, worms, and mammals, highlighting the widespread importance of this gene during embryonic development and in adulthood. ATAD3A is a downstream effector of target of rapamycin (TOR) signalling in Drosophila and exhibits typical features of proteins from the ERMIONE‐like complex in metazoans. In humans, mutations in the ATAD3A gene represent a new link between altered mitochondrial–ER interaction and recognizable neurological syndromes. The primate‐specific ATAD3B protein is a biomarker of pluripotent embryonic stem cells. Through negative regulation of ATAD3A function, ATAD3B supports mitochondrial stemness properties.  相似文献   

8.
A comparative study of proteins adsorbed on outer surface of microsomal membranes was carried out. Electrophoretic differences between endoplasmic reticulum proteins from liver and brain cells were revealed. These differences were not observed in the presence of sodium dodecyl sulphate. Proteins of brain microsomes are shown to bind in vitro with membranes of brain endoplasmic reticulum to a higher extent than with liver microsomal membranes.  相似文献   

9.
10.
The crystalloid endoplasmic reticulum (ER) of UT-1 cells is a specialized smooth ER that houses 3-hydroxy-3-methylglutaryl-CoA reductase, a membrane protein that regulates endogenous cholesterol synthesis. The biogenesis of this ER is coupled to the over production of 3-hydroxy-3-methylglutaryl-CoA reductase. To understand better this membrane system and the relationship between the synthesis of a membrane protein and the formation of membrane, we have purified the crystalloid ER. Purified crystalloid ER did not contain significant amounts of membrane derived from the Golgi apparatus, mitochondria, or plasma membrane. Approximately 24% of the protein in this organelle corresponded to 3-hydroxy-3-methylglutaryl-CoA reductase; however, at least eight other proteins were detected by gel electrophoresis. One of these proteins (Mr 73,000) was as abundant as reductase. These results suggest that the biogenesis of this ER involves the coordinate synthesis of multiple membrane and content proteins.  相似文献   

11.
Urade R 《The FEBS journal》2007,274(5):1152-1171
Secretory and transmembrane proteins are synthesized in the endoplasmic reticulum (ER) in eukaryotic cells. Nascent polypeptide chains, which are translated on the rough ER, are translocated to the ER lumen and folded into their native conformation. When protein folding is inhibited because of mutations or unbalanced ratios of subunits of hetero-oligomeric proteins, unfolded or misfolded proteins accumulate in the ER in an event called ER stress. As ER stress often disturbs normal cellular functions, signal-transduction pathways are activated in an attempt to maintain the homeostasis of the ER. These pathways are collectively referred to as the unfolded protein response (UPR). There have been great advances in our understanding of the molecular mechanisms underlying the UPR in yeast and mammals over the past two decades. In plants, a UPR analogous to those in yeast and mammals has been recognized and has recently attracted considerable attention. This review will summarize recent advances in the plant UPR and highlight the remaining questions that have yet to be addressed.  相似文献   

12.
Tomato (Lycopersicon esculentum Mill.) mitochondrial small heat-shock protein (MT-sHSP) gene is known to respond quickly to heat stress in the leaves. To elucidate the role of sHSPs under heat stress in the reproductive organs and developing fruits, we examined the expression of the gene for MT-sHSP. In addition, the expression profiles of the genes for the cytosolic (class I and II) and endoplasmic reticulum (ER) localized small heat-shock proteins (class I-, class II- and ER-sHSP, respectively) were also examined. Although the examined genes were not or weakly expressed at a normal growth temperature, they all significantly responded to heat stress. In the flower, MT- and ER-sHSP were accumulated not in the pollen, but in the ovule. The expression profile suggests a role for sHSPs in protection against heat stress.  相似文献   

13.
Here we report a novel small protein that is highly conserved across vertebrates. The protein, which we have named TRIQK, has no homology to any previously reported proteins or functional domains, but all vertebrate homologs of this protein share a characteristic triple repeat of the sequence QXXK/R, as well as a hydrophobic C-terminal region. The Xenopus triqk gene (xTriqk) was isolated in an expression screen on the basis of its ability to cause dramatic changes in cell size and nuclear size and morphology in developing embryos. The Xenopus and mouse triqk genes are broadly expressed throughout embryogenesis, and mtriqk is also generally expressed in mouse adult tissues. TRIQK proteins are localized to the endoplasmic reticulum membrane. Depletion of endogenous xTRIQK protein in Xenopus embryos causes no detectable morphological or functional changes in tadpoles.  相似文献   

14.
Summary The cortical endoplasmic reticulum (ER) of living onion inner epidermal cells has been studied by video-microscopy. We observed local movements of individual ER membranes, which cause transformations of the polygonal net. Membrane tubules glide along one another, causing transfiguration, reduction and decomposition of polygons. Membrane tubules and lamellae also extend from the existing net and thus increase the amount of ER. These movements occur in close correlation with organelle movements, suggesting a structural coalignment of the net with actin microfilaments (MFs). The membranes in the cortical cytoplasm are not distributed randomly but are tethered to certain domains; even when dislocated, they return to such anchoring points. This was not observed with ER reaching deeper into the cytoplasm. We therefore propose that close associations of ER and the plasma membrane (PM) stabilize the cortical ER and may stabilize coaligning MFs as well.Abbreviations AVEC-DIC Allen video-enhanced contrast-differential interference contrast - DiOC6 (3) 3,3-dihexyloxacarbocyanine iodide - ER endoplasmic reticulum - MF microfilament - MT microtubules - PM plasma membrane Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

15.
S. Fujikawa  K. Takabe 《Protoplasma》1996,190(3-4):189-203
Summary Cortical parenchyma cells of mulberry (Morus bombycis Koidz. cv. Goroji) become extremely cold hardy in winter and can tolerate equilibrium freezing below –30 °C and subsequent immersion into liquid nitrogen. We show in this ultrastructural study that, in these extremely cold hardy cortical parenchyma cells of mulberry collected in winter, initiation of freezing at –5 °C resulted in the formation of multiplex lamellae (MPL) that completely covered the area beneath the plasma membrane. The MPL were produced by fusion of pre-existing vesicular endoplasmic reticulum (ER), via a reticular ER network. The completed MPL were composed of a parallel array of sheet-like ER cisternae. This structural reorganization of the ER was completed within 10 min upon freezing at –5 °C and was quickly reversed upon thawing. The same structural reorganization of the ER was produced by osmotic dehydration of the cortical tissues with a 2.7 osmol sorbitol solution at 20 °C. Thus, the structural reorganization of the ER upon freezing was, in fact, produced by dehydration. In winter samples, the formation of MPL with the initiation of freezing completely inhibited close apposition of membranes upon deep freezing that has been reported to be a cause of freezing injury via the production of ultrastructural changes in the plasma membrane. Similar but more or less incomplete MPL were produced by freezing or osmotic dehydration in cortical parenchyma cells collected in spring and autumn, and these MPL partly inhibited close apposition of membranes. MPL were not produced in the cells of mulberry collected in summer and close apposition of membranes occurred upon deep freezing. We speculate that the formation of MPL with the initiation of freezing might play a specific role in inhibiting the close apposition of membranes due to the specific nature of the cisternal membranes and might, consequently, be responsible for the high freezing tolerance of winter cells.  相似文献   

16.
In this paper we review some of the large quantities of information currently available concerning the identification, structure and function of Ca2+-binding proteins of endoplasmic and sarcoplasmic reticulum membranes. The review places particular emphasis on identification and discussion of Ca2+ storage proteins in these membranes. We believe that the evidence reviewed here supports the contention that the Ca2+-binding capacity of both calsequestrin and calreticulin favor their contribution as the major Ca2+-binding proteins of muscle and nonmuscle cells, respectively. Other Ca2+-binding proteins discovered in both endoplasmic reticulum and sarcoplasmic reticulum membranes probably contribute to the overall Ca2+ storage capacity of these membrane organelles, and they also play other important functional role such as posttranslational modification of newly synthesized proteins, a cytoskeletal (structural) function, or movement of Ca2+ within the lumen of the sarcoplasmic/endoplasmic reticulum towards the storage sites.Abbreviations SR Sarcoplasmic Reticulum - ER Endoplasmic Reticulum - InsP3 Inositol 1,4,5-trisphosphate - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - PDI Protein Disulphide Isomerase - T3BP Thyroid Hormone Binding Protein - Grp Glucose regulated proteins - HCP Histidine-rich Ca2+ binding Protein - LDL Low Density Lipoprotein  相似文献   

17.
Protein export from the endoplasmic reticulum (ER) is mediated by the accumulation of COPII proteins such as Sar1, Sec23/24 and Sec13/31 at specialized ER export sites (ERES). Although the distribution of COPII components in mammalian and yeast systems is established, a unified model of ERES dynamics has yet to be presented in plants. To investigate this, we have followed the dynamics of fluorescent fusions to inner and outer components of the coat, AtSec24 and AtSec13, in three different plant model systems: tobacco and Arabidopsis leaf epidermis, as well as tobacco BY-2 suspension cells. In leaves, AtSec24 accumulated at Golgi-associated ERES, whereas AtSec13 showed higher levels of cytosolic staining compared with AtSec24. However, in BY-2 cells, both AtSec13 and AtSec24 labelled Golgi-associated ERES, along with AtSec24. To correlate the distribution of the COPII coat with the dynamics of organelle movement, quantitative live-cell imaging analyses demonstrated that AtSec24 and AtSec13 maintained a constant association with Golgi-associated ERES, irrespective of their velocity. However, recruitment of AtSec24 and AtSec13 to ERES, as well as the number of ERES marked by these proteins, was influenced by export of membrane cargo proteins from the ER to the Golgi. Additionally, the increased availability of AtSec24 affected the distribution of AtSec13, inducing recruitment of this outer COPII coat component to ERES. These results provide a model that, in plants, protein export from the ER occurs via sequential recruitment of inner and outer COPII components to form transport intermediates at mobile, Golgi-associated ERES.  相似文献   

18.
Seeds of the tung tree (Vernicia fordii) produce large quantities of triacylglycerols (TAGs) containing approximately 80% eleostearic acid, an unusual conjugated fatty acid. We present a comparative analysis of the genetic, functional, and cellular properties of tung type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2), two unrelated enzymes that catalyze the committed step in TAG biosynthesis. We show that both enzymes are encoded by single genes and that DGAT1 is expressed at similar levels in various organs, whereas DGAT2 is strongly induced in developing seeds at the onset of oil biosynthesis. Expression of DGAT1 and DGAT2 in yeast produced different types and proportions of TAGs containing eleostearic acid, with DGAT2 possessing an enhanced propensity for the synthesis of trieleostearin, the main component of tung oil. Both DGAT1 and DGAT2 are located in distinct, dynamic regions of the endoplasmic reticulum (ER), and surprisingly, these regions do not overlap. Furthermore, although both DGAT1 and DGAT2 contain a similar C-terminal pentapeptide ER retrieval motif, this motif alone is not sufficient for their localization to specific regions of the ER. These data suggest that DGAT1 and DGAT2 have nonredundant functions in plants and that the production of storage oils, including those containing unusual fatty acids, occurs in distinct ER subdomains.  相似文献   

19.
We used immunocytochemical and fluorescence assays to investigate the subcellular location of the protein encoded by Down syndrome critical region gene 2 (DSCR2) in transfected cells. It was previously suggested that DSCR2 is located in the plasma membrane as an integral membrane protein. Interestingly, we observed this protein in the endoplasmic reticulum (ER) of cells. We also studied whether the truncated forms of DSCR2 showed different subcellular distributions. Our observations indicate that DSCR2 probably is not inserted into the membrane of the endoplasmic reticulum since the fragments lacking the predicted transmembrane (TM) helices remained associated with the ER. Our analyses suggest that, although DSCR2 is associated with the endoplasmic reticulum, it is not an integral membrane protein and it is maintained on the cytoplasmic side of the ER by indirect interaction with the ER membrane or with another protein.  相似文献   

20.
The role of xanthurenic acid in a cell is unknown, but it is suspected to provoke several diseases. This study shows that accumulation of xanthurenic acid in the lens epithelial cells leads to an overexpression of endoplasmic reticulum (ER) resident stress chaperones proteins, glucose-regulated protein (Grp94), and calreticulin. Both chaperones proteins are overexpressed in the presence of unfolded proteins. A formation of the unfolded protein in the presence of xanthurenic acid may take place due to covalent binding of xanthurenic acid to protein. Grp94 is responsible for scavenging of the unfolded proteins. The results suggest that Grp94 scavenged xanthurenic acid-modified proteins, and for this reason become preferentially yellow-stained in the presence of yellow xanthurenic acid. Such a modified Grp94 is weakly recognized by anti-Grp94 antibody. An end point of the xanthurenic acid accumulation in the cell is the cell death. In conclusion xanthurenic acid can lead to cell pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号