共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
木糖是纤维素原料水解液中最主要的五碳糖成分,由于野生的酿酒酵母缺乏有效的木糖利用途径,将外源木糖代谢途径整合至酿酒酵母中使其具有发酵木糖生产乙醇的能力是构建纤维素乙醇发酵菌株的关键。国内外学者的研究表明,同一木糖代谢途径导入不同酿酒酵母菌株中,所得到的重组菌发酵性能存在明显差异,表明宿主的遗传背景对菌株利用木糖能力和发酵性能具有重要的影响。就酿酒酵母宿主对重组菌株的木糖发酵性能的影响进行了综述,分析了产生宿主差异的内在机理,为进一步选育高效木糖共发酵菌种提供借鉴。 相似文献
5.
选择乙酸根、糠醛、5-羟甲基糠醛、苯酚、香草酸和丁香醛等6种典型木质纤维素酸解副产物,考察它们对D-乳酸生产菌Sporolactobacillus sp.Y2-8生长及发酵的影响。实验结果表明:酚类物质抑制作用最强烈,0.25 g/L丁香醛已经完全抑制了菌体的生长和D-乳酸的发酵;苯酚和香草酸在低浓度(≤1.0 g/L)时抑制作用较小,但质量浓度达到3 g/L时对D-乳酸产量的抑制率分别为99%和70%;3 g/L糠醛和5-羟甲基糠醛对产物的抑制率分别为60%与20%,抑制作用小于酚类;乙酸根的影响最小,10 g/L的乙酸钠对菌体的生长和发酵几乎无抑制作用;当抑制物混合时,存在着相互促进作用,抑制作用更强烈。 相似文献
6.
采用玉米秸秆水解糖和玉米浆发酵生产丁二酸 总被引:1,自引:0,他引:1
研究了以玉米秸秆水解糖为碳源,不同氮源条件下琥珀酸放线杆菌Actinobacillus succinogenesSF-9的丁二酸发酵产酸能力。结果表明玉米浆可以替代酵母膏作为丁二酸发酵的廉价氮源。厌氧摇瓶丁二酸发酵单因素试验,得到在初糖浓度50 g/L时,玉米浆的较佳用量为20 g/L。在5 L搅拌罐上,考察了不同初始玉米秸秆水解糖浓度对A.succinogenes SF-9发酵生产丁二酸的影响,结果显示高初始秸秆糖浓度对琥珀酸放线杆菌的生长有抑制作用。采用补料分批发酵,发酵60 h丁二酸的产量达到42.7g/L,丁二酸产率82.7%,生产强度0.81 g/(L·h)。丁二酸的产量和生产强度较分批发酵有明显提高。 相似文献
7.
木质纤维素稀酸水解糖液乙醇发酵研究进展 总被引:1,自引:0,他引:1
以木质纤维素为原料生产燃料乙醇,首先要对原料进行预处理得到可发酵糖,在稀酸水解木质纤维素得到的糖液中,除含有葡萄糖、木糖等六碳糖和五碳糖外,根据水解温度、酸浓度和时间的不同,还含有不同浓度的发酵抑制剂。因此,在研究木质纤维素稀酸水解糖液的乙醇发酵中,对代谢木糖成乙醇的菌种的研究、对耐/代谢发酵抑制剂微生物的研究、对稀酸水解糖液的脱毒方法的研究以及对稀酸水解糖液不同发酵方式的乙醇发酵研究等非常重要。重点介绍了以上几个方面近几年研究的进展。 相似文献
8.
对汽爆玉米秸秆同步酶解发酵生产乙醇的条件进行优化。首先利用Fractional Factorial设计法对影响乙醇产量的7个因素进行评价,筛选出具有显著效应的3个因素,即反应温度、酶添加量、总反应时间,再以Box—Behnken设计法及响应面分析法确定主要因素的最佳水平,即反应温度37℃,每g纤维素添加纤维素酶32u,反应时间87h,此时乙醇体积分数达到3.69%。新工艺条件实验结果表明,乙醇体积分数在87h可达到3.76%,和原工艺相比,反应时间缩短了9h,乙醇体积分数提高了13%。 相似文献
9.
不同玉米秸秆部位的成分组成及分布对预处理和酶解影响显著。研究表明:韧皮部与髓芯的成分相近,但叶子的差异较大,其木聚糖和总糖的质量分数最高,分别为29.48%和66.15%,而木质素的质量分数最低,因而叶子更容易预处理。玉米秸秆在稀酸预处理过程中可回收96.9%葡聚糖和50.0%~70.0%木聚糖,其中50.0%~60.0%木聚糖水解成木糖溶出;不同部位的木聚糖损失率与初始的木聚糖含量正相关;经稀酸预处理后,叶子中葡聚糖的质量分数最高,达72.40%,叶子和髓芯易于被纤维素酶水解生成葡萄糖,而韧皮部困难。不同部位的酶解得率与自身的葡聚糖含量正相关,与酸不溶木质素含量负相关,同时受原料的物理结构、葡聚糖和木质素大分子的化学组成等影响。 相似文献
10.
不同腐解期玉米秸秆对塿土胡敏酸基本性质及级分变异的影响 总被引:2,自引:0,他引:2
采用田间腐解试验,在研究不同腐解期玉米秸秆对土壤胡敏酸性质影响的基础上,利用酒精分级沉淀法对土壤胡敏酸进行分级,研究了不同腐解期土壤胡敏酸级分组成及性质变化.结果表明,在整个腐解过程中土壤胡敏酸由A型转化为P型又转化为A型,呈现由复杂到简单又到复杂的变化趋势.不同腐解期土壤胡敏酸的级分组成不同.玉米秸秆更新土壤胡敏酸过程是一个双向过程,一方面使胡敏酸中结构复杂成分(级分1、2、3)向简单化发展,另一方面一些小分子胡敏酸(级分6、7)随时间推移按Rp→P→A途径逐渐缩合. 相似文献
11.
Pretreatment of corn stover in 0.5% sulfuric acid at 160 °C for 40 min realized a maximum monomeric plus oligomeric xylose yield of 93.1% compared to a maximum of only 71.5% for hydrothermal (no added mineral acid) pretreatment at 180 °C for 30 min. To explain differences in dilute acid and hydrothermal yields, a fast reacting xylan fraction (0.0889) was assumed to be able to directly form monomeric xylose while a slow reacting portion (0.9111) must first form oligomers during hydrothermal pretreatment. Two reactions to oligomers were proposed: reversible from fast reacting xylan and irreversible from slow reacting xylan. A kinetic model and its analytical solution simulated xylan removal data well for dilute acid and hydrothermal pretreatment of corn stover. These results suggested that autocatalytic reactions from xylan to furfural in hydrothermal pretreatment were controlled by oligomeric xylose decomposition, while acid-catalytic reactions in dilute acid pretreatment were controlled by monomeric xylose decomposition. 相似文献
12.
Saccharomyces cerevisiae Y5 was used to produce ethanol from enzymatic hydrolysate of non-detoxified steam-exploded corn stover, with and without a nitrogen source, and decreasing inoculum size. The results indicated that the ethanol concentration of 44.55 g/L, corresponding to 94.5% of the theoretical yield was obtained after 24 h, with an inoculum size of 10% (v/v) and nitrogen source (corn steep liquor, CSL) of 40 mL/L. With the same inoculum size, and without CSL, the ethanol concentration was 43.21 g/L, corresponding to 91.7% of the theoretical value after 60 h. With a decreased inoculum size of 5% (v/v), and without CSL, the ethanol concentration was 40.00 g/L, corresponding to 85.8% of the theoretical value after 72 h. The strain offers the potential to improve the economy of cellulosic ethanol production by simplifying the production process and reducing the costs associated with the process such as water, capital equipment and nutrient supplementation. 相似文献
13.
Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute‐acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose–xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute‐acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical‐based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. Biotechnol. Bioeng. 2010;105: 992–996. © 2009 Wiley Periodicals, Inc. 相似文献
14.
Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol
production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose
fermenting organisms. In this work, the thermophilic anaerobic bacterial strain Thermoanaerobacter BG1L1 was assessed for its ability to ferment undetoxified PCS hydrolysate in a continuous immobilized reactor system at
70°C. The tested strain showed significant resistance to PCS, and substrate concentrations up to 15% total solids (TS) were
fermented yielding ethanol of 0.39–0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89–98%) for PCS up to
10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no
contamination was seen without the use of any agent for preventing bacterial infections. This study demonstrated that the
use of immobilized thermophilic anaerobic bacteria for continuous ethanol fermentation could be promising in a commercial
ethanol process in terms of system stability to process hardiness and reactor contamination. The tested microorganism has
considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. 相似文献
15.
Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation 下载免费PDF全文
Mahdieh Aghazadeh Michael R. Ladisch Abigail S. Engelberth 《Biotechnology progress》2016,32(4):929-937
Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild‐type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid–liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus?, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L?1. The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y‐1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929–937, 2016 相似文献
16.
Performance of a newly developed integrant of Zymomonas
mobilis for ethanol production on corn stover hydrolysate 总被引:1,自引:0,他引:1
Efficient conversion of lignocellulosic biomass requires biocatalysts able to tolerate inhibitors produced by many pretreatment processes. Recombinant Zymomonas mobilis 8b, a recently developed integrant of Zymomonas mobilis 31821(pZB5), tolerated acetic acid up to 16 g l(-1) and achieved 82%-87% (w/w) ethanol yields from pure glucose/xylose solutions at pH 6 and temperatures of 30 degrees C and 37 degrees C. An ethanol yield of 85% (w/w) was achieved on glucose/xylose from hydrolysate produced by dilute sulfuric acid pretreatment of corn stover after an overliming' process was used to improve hydrolysate fermentability. 相似文献
17.
用稀硫酸对玉米芯半纤维素进行水解是一种常用的方法,但是玉米芯半纤维素在水解成木糖等还原糖的同时还产生了糠醛、乙酸和酚类等抑制水解液发酵的毒物。以混合脱毒法为基础,研究活性炭在脱毒过程中的作用。结果表明,有脱毒效果的活性炭种类是GH-13和GH-15,随着活性炭添加量的增大,脱毒效果增强,但木糖损失也随之增多。其中采用5%GH-15时的脱毒效果最佳,该条件下乙酸去除率为24.60%,糠醛去除率达100%,酚类化合物去除效率R280值0.009,而木糖的损失率为23.70%。 相似文献
18.
Corn stover (CS) hydrolysate was used as the fermentation feedstock of Trichosporon cutaneum CX1 for production of microbial lipid as the potential raw material of biodiesel. Two major technical barriers of the lipid fermentation were investigated: one was the strong inhibition of lignocellulose degradation compounds generated in the CS pretreatment; the other was the low carbon-to-nitrogen molar ratio (C/N ratio) of the CS hydrolysate. The newly established biodetoxification method was applied to remove the inhibitors in the pretreated CS. The enhancement of the pretreatment severity and the biodetoxification intensity on the lipid fermentation was investigated. The results show that the biodetoxification not only efficiently removed the inhibitor substances, but also led to the reduction of nitrogen content and the increase of C/N ratio. The cell lipid content of T. cutaneum CX1 using the biodetoxified CS hydrolysate reached 23.5%, which was doubled than that using the non-detoxified value. 相似文献
19.
Enhancing effect of albumin hydrolysate on ethanol production employing Saccharomyces sake 总被引:1,自引:0,他引:1
The enhancing effect of albumin hydrolysate on ethanol production was investigated in ethanol fermentations using Saccharomyces sake. In batchwise ethanol production, addition of supplemental albumin hydrolysate and phosphatidylcholine, or albumin hydrolysate alone, brought about a more than 60% increase in final ethanol concentration (148 or 144 g/L compared with 88 g/L with no supplementation [control] after 72 h). The effect of the supplements is believed to be due to an enhanced alcohol tolerance of cells grown in media containing the supplements. Cells grown in media containing albumin hydrolysate were enriched in phenyalanine, tyrosine, and methionine in their plasma membranes. All three amino acids were also present in considerable amounts in the albumin hydrolysate. This fact suggests that the three amino acids, which are present in albumin hydrolysate, are incorporated into the plasma membranes of cells. Under ethanol production conditions in which only one amino acid among the components of albumin hydrolysate was excluded, namely phenlalanine, tyrosine, or methionine, significant reductions in ethanol production resulted. (c) 1995 John Wiley & Sons, Inc. 相似文献
20.
【目的】木糖发酵是纤维素燃料乙醇生产的一个关键瓶颈,同时木质纤维素水解液中的乙酸严重抑制酿酒酵母的木糖发酵过程,因此通过基因工程手段提高菌株对木糖的利用以及对乙酸的耐受性具有重要意义。本研究以非氧化磷酸戊糖途径(PPP途径)中关键基因转醛醇酶基因(TAL1)为研究对象,探讨了3种不同启动子PTDH3、PAHP1和PUBI4,控制其表达对菌株利用木糖和耐受乙酸的影响。【方法】通过同源重组用3种启动子替换酿酒酵母基因工程菌NAPX37的TAL1基因的启动子PTAL1,再通过孢子分离和单倍体交配构建了纯合子,利用批次发酵比较了在以木糖为唯一碳源和混合糖(葡萄糖和木糖)为碳源条件下,3种启动子控制TAL1基因表达导致的发酵和乙酸耐受能力的差异。【结果】启动子PTDH3、PAHP1和PUBI4在不同程度上提高了TAL1基因的转录水平,提高了菌株对木糖的利用速率及乙酸耐受能力,提高了菌株在60 mmol/L乙酸条件下的葡萄糖利用速率。在以木糖为唯一碳源且无乙酸存在、以及混合糖为碳源的条件下,PAHP1启动子控制TAL1表达菌株的发酵结果优于PTDH3和PUBI4启动子的菌株,PAHP1启动子控制的TAL1基因的转录水平比较合适。在木糖为唯一碳源且乙酸为30 mmol/L时,PUBI4启动子控制TAL1基因表达的菌株发酵结果则优于PAHP1和PTDH3启动子菌株,此时PUBI4启动子控制的TAL1的转录水平比较合适。【结论】启动子PTDH3、PAHP1和PUBI4不同程度地提高TAL1基因的表达,在不同程度上改善了酵母菌株的木糖发酵速率和耐受乙酸性能,改善程度受发酵条件的影响。 相似文献