首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Nature's best-known example of colorful, changeable, and diverse skin patterning is found in cephalopods. Color and pattern changes in squid skin are mediated by the action of thousands of pigmented chromatophore organs in combination with subjacent light-reflecting iridophore cells. Chromatophores (brown, red, yellow pigment) are innervated directly by the brain and can quickly expand and retract over underlying iridophore cells (red, orange, yellow, green, blue iridescence). Here, we present the first spectral account of the colors that are produced by the interaction between chromatophores and iridophores in squid (Loligo pealeii). Using a spectrometer, we have acquired highly focused reflectance measurements of chromatophores, iridophores, and the quality and quantity of light reflected when both interact. Results indicate that the light reflected from iridophores can be filtered by the chromatophores, enhancing their appearance. We have also measured polarization aspects of iridophores and chromatophores and show that, whereas structurally reflecting iridophores polarize light at certain angles, pigmentary chromatophores do not. We have further measured the reflectance change that iridophores undergo during physiological activity, from "off" to various degrees of "on", revealing specifically the way that colors shift from the longer end (infra-red and red) to the shorter (blue) end of the spectrum. By demonstrating that three color classes of pigments, combined with a single type of reflective cell, produce colors that envelop the whole of the visible spectrum, this study provides an insight into the optical mechanisms employed by the elaborate skin of cephalopods to give the extreme diversity that enables their dynamic camouflage and signaling.  相似文献   

2.
Summary Cephalopods generally are thought to have only static iridophores, but this report provides qualitative and quantitative evidence for active control of certain iridescent cells in the dermis of the squidLolliguncula brevis. In vivo observations indicate the expression of iridescence to be linked to agonistic or reproductive behavior. The neuromodulator acetylcholine (ACh) induced dramatic optical changes in active iridophores in vitro, whereas ACh had little effect on passive iridophores elsewhere in the mantle skin. Bath application of physiological concentrations of ACh (10-7M to 10-6M) to excised dermal skin layers transformed the active iridophores from a non-reflective diffuse blue to brightly iridescent colors, and this reaction was reversible and repeatable. The speed of change to iridescent in vitro corresponded well to the speed of changes in the living animal. Pharmacological results indicate the presence of muscarinic receptors in this system and that Ca++ is a mediator for the observed changes. Although ACh is present in physiological quantities in the dermal iridophore layer, it is possible that ACh release is not controlled directly by the nervous system because electrophysiological stimulation of major nerves in the periphery resulted in no iridescence inL. brevis; nor did silver staining or transmission electron microscopy reveal neuronal elements in the iridophore layer. Thus, active iridophores may be controlled by ACh acting as a hormone.  相似文献   

3.
Evidence is presented that changes in the optical properties of active iridophores in the dermis of the squid Lolliguncula brevis are the result of changes in the ultrastructure of these cells. At least two mechanisms may be involved when active cells change from non-iridescent to iridescent or change iridescent color. One is the reversible change of labile, detergent-resistant proteinaceous material within the iridophore platelets, from a contracted gel state (non-iridescent) to an expanded fluid or sol state when the cells become iridescent. The other is a change in the thickness of the platelets, with platelets becoming significantly thinner as the optical properties of the iridophores change from non-iridescent to iridescent red, and progressively thinner still as the observed iridescent colors become those of shorter wavelengths. Optical change from Rayleigh scattering (non-iridescent) to structural reflection (iridescent) may be due to the viscosity change in the platelet material, with the variations in observed iridescent colors due to changes in the dimensions of the iridophore platelets.  相似文献   

4.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

5.
Stress is an important potential factor mediating a broad range of cellular pathways, including those involved in condition‐dependent (i.e., honest) color signal expression. However, the cellular mechanisms underlying the relationship between stress and color expression are largely unknown. We artificially elevated circulating corticosterone levels in male tawny dragon lizards, Ctenophorus decresii, to assess the effect of stress on the throat color signal. Corticosterone treatment increased luminance (paler throat coloration) and decreased the proportion of gray, thereby influencing the gray reticulations that produce unique patterning. The magnitude of change in luminance for corticosterone‐treated individuals in our study was around 6 “just noticeable differences” to the tawny dragon visual system, suggesting that lizards are likely to be able to perceive the measured variation. Transmission electron microscopy (TEM) of iridophore cells indicated that luminance increased with increasing density of iridophore cells and increased spacing (and/or reduced size) of crystalline guanine platelets within them. Crystal spacing within iridophores also differed between skin colors, being greater in cream than either gray or yellow skin and greater in orange than yellow skin. Our results demonstrate that stress detectably impacts signal expression (luminance and patterning), which may provide information on individual condition. This effect is likely to be mediated, at least in part, by structural coloration produced by iridophore cells.  相似文献   

6.
In addition to melanophores and xanthophores, there existed two types of iridophore in the dermis of the scalycheek damselfish, Pomacentrus lepidogenys. There are dendritic iridophores which reflect white light-rays by Tyndall scattering, and the round or somewhat ellipsoidal iridophores which reflect rays with a relatively narrow spectral peak from blue to green through the non-ideal thin-film interference. Most of the dendritic iridophores were covered with xanthophores and were situated over melanophores, thus constituting a kind of chromatophore unit which produces a yellow or yellowish-green color. The characteristic yellowish-green hue of the integument results from a compound effect of small contributions by more elementary colors. During color changes of the skin, the position of the spectral peak does not shift. Unlike the iridophores of the blue damselfish, both types of iridophore of the scalycheek damselfish were found to be inactive. It appears, therefore, that the aggregation and dispersion of pigment within the melanophores is the primary mechanism responsible for the changes in color of this species.  相似文献   

7.
Goda M  Fujii R 《Zoological science》1998,15(3):323-333
Measurements of spectral reflectance from the sky-blue portion of skin from the common surgeonfish, Paracanthurus hepatus, showed a relatively steep peak at around 490 nm. We consider that a multilayer thin-film interference phenomenon of the non-ideal type, which occurs in stacks of very thin light-reflecting platelets in iridophores of that region, is primarily responsible for the revelation of that hue. The structural organization of the iridophore closely resembles that of bluish damselfish species, although one difference is the presence of iridophores in a monolayer in the damselfish compared to the double layer of iridophores in the uppermost part of the dermis of surgeonfish. If compared with the vivid cobalt blue tone of the damselfish, the purity of the blue hue of the surgeonfish is rather low. This may be ascribable mainly to the double layer of iridophores in the latter since incident lightrays are complicatedly reflected and scattered in the strata. The dark-blue hue of the characteristic scissors-shaped pattern on the trunk of surgeonfish is mainly due to the dense population of melanophores, because iridophores are only present there in a scattered fashion. Photographic and spectral reflectance studies in vivo, as well as photomicrographic, photo-electric, and spectrometric examinations of the state of chromatophores in skin specimens in vitro, indicate that both melanophores and iridophores are motile. Physiological analyses disclosed that melanophores are under the control of the sympathetic nervous and the endocrine systems, while iridophores are regulated mainly by nerves. The body color of surgeonfish shows circadian changes, and becomes paler at night; this effect may be mediated by the pineal hormone, melatonin, which aggregates pigment in melanophores.  相似文献   

8.
We investigated whether variation in structural plumage coloration in satin bowerbirds, Ptilonorhynchus violaceus , could reveal the intensity of infection from parasites, as predicted from models of parasite-mediated sexual selection (PMSS). To do this, we captured adult male, female, and juvenile male satin bowerbirds in Queensland, Australia, and objectively measured individual plumage reflectance from four body regions using a spectrometer. We quantified both ectoparasite load and the intensity of infection from blood parasites. In iridescent blue adult males, plumage reflectance is unimodal, with a single peak in the ultraviolet, while in greenish females and juveniles, plumage reflectance is bimodal, with peaks in both the ultraviolet and green portions of the spectrum. In adult males, the intensity of infection from blood parasites was best predicted by plumage brightness (total reflectance), with brighter males having fewer parasites. Similarly, juvenile males exhibiting greater UV chroma (proportion of reflectance in the UV) had fewer blood parasites. Our findings support a key prediction of PMSS models and provide the first evidence that a structural colour ornament can signal the intensity of infection from blood parasites.  相似文献   

9.
  • 1.1. The change in color of the lateral stripe of the neon tetra, Paracheirodon innesi, is due to the motile activity of the iridophores which are sensitive to light and adrenergic stimuli.
  • 2.2. The light-reflecting platelets within the iridophore were found to be arranged regularly, making an acute angle of depression with respect to the median plane of the body.
  • 3.3. When epi-illumination was applied to the skin piece laid horizontally on the stage of a light microscope (with an angle of incidence of about 40°) and the wavelength of the reflected light introduced into the objective lens was monitored, the spectral peak was found to shift to longer wavelengths with the application of K+-rich saline, with a simultaneous decrease in reflectance.
  • 4.4. Using the identical fiber assembly for light irradiation and measurements of reflected light, we found that the angle of incident light producing the maximum reflectance, which corresponded to the inclination of the platelets, increased with the shift in the spectral peak toward longer wavelengths.
  • 5.5. It appears from our results that a change in the angle of inclination of the platelets triggered by adrenergic stimuli may give rise to a change in the distance between the platelets which, in turn, leads to the shift in the spectral peak.
  相似文献   

10.
Iridescent tissue colors are thought to be produced by iridophores through the optical phenomenon of thin-layer interference. Land and others have shown that structural features, predominantly reflecting platelet width and the cytoplasmic spacing between layers of platelets, determine the wavelength of light maximally reflected by this mechanism in iridophores. Some researchers have used interference microscopy to estimate these structural parameters, but the most direct measurement technique should be transmission electron microscopy (TEM). Transmission electron microscopy (TEM) has associated processing artifacts (particularly cytoplasmic shrinkage) that preclude direct measurement of ultrastructure, but if a number of assumptions are made, reflected wave-lengths can be predicted. A thin-layer interference model and its associated assumptions were tested using TEM measurements of iridophores from several brightly colored tissues of each of three lizards (Sceloporus jarroui, S. undulatus erythrocheilus, and S. magister). In all the instances examined when the contribution of the pigments present were accounted for, tissue color corresponded with predicted iridophore reflectances from the model. Finally, if the model and its assumptions are assumed to be correct, the amount of iridophore cytoplasmic shrinkage as a result of TEM processing can be calculated.  相似文献   

11.
12.
The aim of this study was to describe the ultrastructure and arrangement of pigment cells in the leopard gecko (Eublepharis macularius) skin to explain how wild‐type coloration is formed. The study also attempted to explain, on a morphological level, how skin colour changes occur. Samples of leopard gecko skin were collected from wild‐type coloration adult specimens. The morphology of pigmented cells was determined using light microscopy on haematoxylin and eosin (H&E) stained sections and in transmission electron microscopy. These studies indicate that skin of E. macularis contains xanthophores and melanophores but lacks iridophores and that this is probably related to nocturnal activity. The number and distribution of xanthophores and melanophores determines the skin colour and pigmentation pattern. The colour changes depend on the arrangement of characteristic protrusions of melanophores and the degree of filling them with melanosomes.  相似文献   

13.
The breast-plate plumage of male Lawes' parotia (Parotia lawesii) produces dramatic colour changes when this bird of paradise displays on its forest-floor lek. We show that this effect is achieved not solely by the iridescence--that is an angular-dependent spectral shift of the reflected light--which is inherent in structural coloration, but is based on a unique anatomical modification of the breast-feather barbule. The barbules have a segmental structure, and in common with many other iridescent feathers, they contain stacked melanin rodlets surrounded by a keratin film. The unique property of the parotia barbules is their boomerang-like cross section. This allows each barbule to work as three coloured mirrors: a yellow-orange reflector in the plane of the feather, and two symmetrically positioned bluish reflectors at respective angles of about 30°. Movement during the parotia's courtship displays thereby achieves much larger and more abrupt colour changes than is possible with ordinary iridescent plumage. To our knowledge, this is the first example of multiple thin film or multi-layer reflectors incorporated in a single structure (engineered or biological). It nicely illustrates how subtle modification of the basic feather structure can achieve novel visual effects. The fact that the parotia's breast feathers seem to be specifically adapted to give much stronger colour changes than normal structural coloration implies that colour change is important in their courtship display.  相似文献   

14.
Hormone-induced pigment translocation studies were conducted at both the light and electron microscopic levels on cultured dermal iridophores from the Mexican leaf frog, Pachymedusa dacnicolor. Two distinct types of dermal iridophores were characterized which differed in (1) their in vivo locations, (2) their overall morphologies in vitro, (3) their responses to alpha-MSH, ACTH, c-AMP or theophylline, (4) their physical alterations of light, and (5) certain ultrastructural features. One iridophore (Type I) was found to be physiologically responsive to the above hormones or agents by a reversible retraction of cellular processes and a thickening of the cell body, an event which is inhibited by cytochalasin B. The other iridophore (Type II) appeared to be unresponsive. Type I iridophores contain cube-like pigmentary organelles, refractosomes, while Type II iridophores contain larger, bar-shaped refractosomes. In addition, both iridophore types contain 60 and 100 A microfilaments as well as microtubules. By in large, micorfilaments were found within microvilli, beneath and parallel to the plasma membrane and in the perinuclear region. Occasionally, bundles of 100 A microfilaments were found between layers of refractosomes in Type I iridophores. These results are discussed in relation to hormone-induced changes in cell shape.  相似文献   

15.
Three general stages of iridophore development were found in Poecilia reticulata that correspond to the development of structural pigmentation. The first stage was prevalent in fish embryos about to hatch to young fish 4 months old. Dermal cells containing elements of endoplasmic reticulum and a Golgi apparatus developed into iridophores. The endoplasmic reticulum early in iridophore development became a few sparse cisternae, and the Golgi apparatus elaborated long rectangular vacuoles with two membranes. From 5 to 15 vacuoles were arranged in parallel stacks in each developing iridophore. Crystals of guanine were deposited within the inner compartment of each vacuole. At this stage of development, the young fish had only a few dermal iridophores next to the lateral muscle. Fish 4 to 6 months old had a more advanced type of iridophore development including several layers of iridophore cells in the dermis. The innermost iridophores near the muscle had many mature crystal-containing vacuoles (iridosomes). Each cell had upt to three stacks of 10–20 iridosomes with their long axis oriented at a slight oblique angle to the surface of the fish. The outer layers of iridophores resembled the immature developing cells found in very young fish. The third developmental stage was found in sexually functional adults. All dermal iridophores contained 2–3 groups of 10–20 mature iridosomes. In mature iridophores, the Golgi apparatus was not found in the cytoplasm. The thickness of the guanine crystals (70 nm) and cytoplasmic intervals (90 nm) results in a constructive interference reflection of 496 nm (blue-green). This iridescence increased concomitantly with the increase in iridophore cells in the dermis and the maturation of their iridosomes.  相似文献   

16.
The dermal chromatophore unit   总被引:3,自引:3,他引:0       下载免费PDF全文
Rapid color changes of amphibians are mediated by three types of dermal chromatophores, xanthophores, iridophores, and melanophores, which comprise a morphologically and physiologically distinct structure, the dermal chromatophore unit. Xanthophores, the outermost element, are located immediately below the basal lamella. Iridophores, containing light-reflecting organelles, are found just beneath the xanthophores. Under each iridophore is found a melanophore from which processes extend upward around the iridophore. Finger-like structures project from these processes and occupy fixed spaces between the xanthophores and iridophores. When a frog darkens, melanosomes move upward from the body of the melanophore to fill the fingers which then obscure the overlying iridophore. Rapid blanching is accomplished by the evacuation of melanosomes from these fingers. Pale coloration ranging from tan to green is provided by the overlying xanthophores and iridophores. Details of chromatophore structure are presented, and the nature of the intimate contact between the chromatophore types is discussed.  相似文献   

17.
The colours of the European tree frog, Hvlu urhorea , depend on three types of chromatophores: in dermo-epidermal direction melanophores, iridophores, and xanthophores. The ability ofthis species to assume a wide range ofcolours implies that very extensive changes in the chromatophores take place, which in turn require control by several regulating factors. The responses of the different chromatophore types to hormones with known melanophore-affecting abilities (α-MSH, β-MSH, ACTH, melatonin) were tested in an in vitro system (freshly explanted skin) using reflectance microspectrophotometry, light microscopy and time-lapse cinemicrography.
α-MSH, β-MSH and ACTH all induce a rapid dispersion of melanosomes during the 10 min after addition. The degree of pigment dispersion induced by ACTH is slightly less than after stimulation with α-MSH or β-MSH.
The iridophores react to MSH or ACTH treatment with a contraction of the entire cell (causing a reduction in reflecting area), and a change in orientation of the platelets, causing a decrease in selective reflectance. The iridophores appear to be especially sensitive to ACTH. A very striking feature of the iridophores when studied with time-lapse cinematography is their strong pulsations (approx. once per minute).
The xanthophores react to MSH and ACTH with a contraction. These cells appear to be sensitive to β-MSH in particular.
Melatonin strongly counteracts the effects of α-MSH, β-MSH and ACTH on all chromatophores.
These studies confirm the dynamic nature not only of the melanophores, but also of the iridophores and xanthophores, as pointed out by Schmidt (1920) and Nielsen (1978a). Furthermore the differences in the time course of the stimulation of the different types of chromatophores by various hormones may provide an experimental basis for the explanation of colour changes in Hyfa arboreu.  相似文献   

18.
Summary Of all amphibians living in arid habitats, reed frogs (belonging to the super speciesHyperolius viridiflavus) are the most peculiar. Froglets are able to tolerate dry periods of up to 35 days or longer immediately after metamorphosis, in climatically exposed positions. They face similar problems to estivating juveniles, i.e. endurance of long periods of high temperature and low RH with rather limited energy and water reserves. In addition, they must have had to develop mechanisms to prevent poisoning by nitrogenous wastes that rapidly accumulate during dry periods as a metabolic consequence of maintaining a non-torpid state.During dry periods, plasma osmolarity ofH. v. taeniatus froglets strongly increased, mainly through urea accumulation. Urea accumulation was also observed during metamorphic climax.During postmetamorphic growth, chromatophores develop with the density and morphology typical of the adult pigmentary pattern. The dermal iridophore layer, which is still incomplete at this time, is fully developed within 4–8 days after metamorphosis, irrespective of maintenance conditions. These iridophores mainly contain the purines guanine and hypoxanthine. The ability of these purines to reflect light provides an excellent basis for the role of iridophores in temperature regulation. In individuals experiencing dehydration stress, the initial rate of purine synthesis is doubled in comparison to specimens continuously maintained under wet season conditions. This increase in synthesis rate leads to a rapid increase in the thickness of the iridophore layer, thereby effectively reducing radiation absorption. Thus, the danger of overheating is diminished during periods of water shortage when evaporative cooling must be avoided. After the development of an iridophore layer of sufficient thickness for effective radiation reflectance, synthesis of iridophore pigments does not cease. Rather, this pathway is further used during the remaining dry season for solving osmotic problems caused by accumulation of nitrogenous wastes. During prolonged water deprivation, in spite of reduced metabolic rates, purine pigments are produced at the same rate as in wet season conditions. This leads to a higher relative proportion of nitrogen end products being stored in skin pigments under dry season conditions. At the end of an experimental dry season lasting 35 days, up to 38% of the accrued nitrogen is stored in the form of osmotically inactive purines in the skin. Thus the osmotic problems caused by evaporative water loss and urea production are greatly reduced.  相似文献   

19.
Summary Reflecting chromatophores in the dermis of the skin of a freshwater goby, Odontobutis obscura, are of an iridophore type. These chromatophores contain numerous reflecting platelets, which are similar to those in iridophores of other fish and amphibian species. It was found that these iridophores are motile, i.e., these cells respond to certain stimuli with translocation of the platelets within the cells. K+ ions induced dispersion of the platelets in excised scale preparations, but not in excised scales from chemically denervated fish. Norepinephrine and melatonin also induced dispersion of the platelets. Alpha-MSH was effective in aggregating these organelles into the centrospheres of the cells. The conclusions reached are: (1) iridophores of O. obscura are motile; (2) the movement of the iridophores is under nervous and hormonal control.  相似文献   

20.
Understanding how animal signals are produced is critical for understanding their evolution because complexity and modularity in the underlying morphology can affect evolutionary patterns. Hummingbird feathers show some of the brightest and most iridescent colors in nature. These are produced by optically complex stacks of hollow, platelet-shaped organelles called melanosomes. Neither how these morphologies produce colors nor their evolution has been systematically studied. We first used nanoscale morphological measurements and optical modeling to identify the physical basis of color production in 34 hummingbird species. We found that, in general, the melanosome stacks function as multilayer reflectors, with platelet thickness and air space size explaining variation in hue (color) and saturation (color purity). Additionally, light rays reflected from the outer keratin surface interact with those reflected by small, superficial melanosomes to cause secondary reflectance peaks, primarily in short (blue) wavelengths. We then compared variation of both the morphological components and the colors they produce. The outer keratin cortex evolves independently and is more variable than other morphological traits, possibly due to functional constraints on melanosome packing. Intriguingly, shorter wavelength colors evolve faster than longer wavelength colors, perhaps due to developmental processes that enables greater lability of the shapes of small melanosomes. Together, these data indicate that increased structural complexity of feather tissues is associated with greater variation in morphology and iridescent coloration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号