首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single‐pool approach applying control variables uniformly to the entire decay process.  相似文献   

2.
陆地生态系统混合凋落物分解研究进展   总被引:26,自引:8,他引:18  
李宜浓  周晓梅  张乃莉  马克平 《生态学报》2016,36(16):4977-4987
凋落物分解在陆地生态系统养分循环与能量流动中具有重要作用,是碳、氮及其他重要矿质养分在生态系统生命组分间循环与平衡的核心生态过程。自然生态系统中,植物群落大多具有较高的物种丰富度和多样性,其混合凋落物在分解过程中也更有可能发生养分传递、化学抑制等种间互作,形成多样化的分解生境,多样性较高的分解者类群以及复杂的级联效应分解,这些因素和过程均对研究混合凋落物分解过程、揭示其内在机制形成了极大的挑战。从构成混合凋落物物种丰富度和多样性对分解生境、分解者多样性及其营养级联效应的影响等方面,综合阐述混合凋落物对陆地生态系统凋落物分解的影响,探讨生物多样性在凋落物分解中的作用。通过综述近些年的研究发现,有超过60%的混合凋落物对其分解速率的影响存在正向或负向的效应。养分含量有差异的凋落物混合分解过程中,分解者优先利用高质量凋落物,使低质量的凋落物反而具有了较高的养分有效性,引起低质量凋落物分解加快并最终使混合凋落物整体分解速率加快;而凋落物物种丰富度对土壤动物群落总多度有轻微的影响或几乎没有影响,但是对线虫和大型土壤动物的群落组成和多样性有显著影响,并随着分解阶段呈现一定动态变化;混合凋落物改变土壤微生物生存的理化环境,为微生物提供更多丰富的分解底物和养分,优化微生物种群数量和群落结构及其分泌酶的活性,并进一步促进了混合凋落物的分解。这些基于植物-土壤-分解者系统的动态分解过程的研究,表明混合凋落物分解作用不只是经由凋落物自身质量的改变,更会通过逐级影响分解者多样性水平而进一步改变分解速率和养分释放动态,说明生物多样性确实在一定程度上调控凋落物分解及其养分释放过程。  相似文献   

3.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

4.
The potential impacts of changes in precipitation patterns associated with global climate change on the relationship between soil community diversity and litter decomposition were investigated. For a period of ca. 5 months, two decomposer communities in litterbags (1000 and 45 μm mesh size) containing spruce litter were subjected to two irrigation treatments: constant and fluctuating (drying/rewetting) moisture conditions. The latter were expected to induce moisture stress on the decomposer communities. The two mesh sizes were used to exclude different faunal components from the decomposer communities. The 1000 μm mesh excluded only the macrofauna, whereas the 45 μm mesh excluded both the macro- and mesofauna. In the short-term perspective of the present study, mesofauna abundance showed no response to imposed fluctuating moisture conditions. Irrespective of the presence of mesofauna, mass loss, microbial biomass and the control mechanisms, regulating carbon mineralization appeared unaffected by fluctuating moisture conditions. The reduction in the functional/structural diversity of the decomposer communities in the 45 μm litterbags resulted in strongly increased Nematoda abundance but it did not alter the response of Nematoda to fluctuating moisture conditions. Processes in the nitrogen (N)-cycle and mass loss were sensitive indicators of changes in the structural and functional complexity of decomposer communities. However, a negative effect of fluctuating moisture conditions on extractable N was coupled to the presence of mesofauna. Extremes in rainfall patterns, generated by climate change, may have a negative impact on the availability of nutrients, particularly N, for plants. This effect could be amplified by an additional impoverishment in the structural and functional complexity of the respective decomposer communities.  相似文献   

5.
Litter decomposition, a fundamental process of nutrient cycling and energy flow in freshwater ecosystems, is driven by a diverse array of decomposers. As an important component of the heterotrophic food web, meiofauna can provide a trophic link between leaf‐associated microbes (i.e., bacteria and fungi)/plant detritus and macroinvertebrates, though their contribution to litter decomposition is not well understood. To investigate the role of different decomposer communities in litter decomposition, especially meiofauna, we compared the litter decomposition of three leaf species with different lignin to nitrogen ratios in litter bags with different mesh sizes (0.05, 0.25, and 2 mm) in a forested stream, in China for 78 days. The meiofauna significantly enhanced the decomposition of leaves of high‐and medium‐ quality, while decreasing (negative effect) or increasing (positive effect) the fungal biomass and diversity. Macrofauna and meiofauna together contributed to the decomposition of low‐quality leaf species. The presence of meiofauna and macrofauna triggered different aspects of the microbial community, with their effects on litter decomposition varying as a function of leaf quality. This study reveals that the meiofauna increased the trophic complexity and modulated their interactions with microbes, highlighting the important yet underestimated role of meiofauna in detritus‐based ecosystems.  相似文献   

6.
This experiment was designed to study three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs. The study combined field measurements with soil lab incubations and ends with a modelling framework based on the results obtained. Soil respiration was periodically measured at an oak savanna woodland and a ponderosa pine plantation. Intact soils cores were collected at both ecosystems, including soils with most labile C burnt off, soils with some labile C gone and soils with fresh inputs of labile C. Two treatments, dry‐field condition and field capacity, were applied to an incubation that lasted 111 days. Short‐term temperature changes were applied to the soils periodically to quantify temperature responses. This was done to prevent confounding results associated with different pools of C that would result by exposing treatments chronically to different temperature regimes. This paper discusses the role of the above‐defined environmental factors on the variability of soil C dynamics. At the seasonal scale, temperature and water were, respectively, the main limiting factors controlling soil CO2 efflux for the ponderosa pine and the oak savanna ecosystems. Spatial and seasonal variations in plant activity (root respiration and exudates production) exerted a strong influence over the seasonal and spatial variation of soil metabolic activity. Mean residence times of bulk SOM were significantly lower at the Nitrogen (N)‐rich deciduous savanna than at the N‐limited evergreen dominated pine ecosystem. At shorter time scales (daily), SOM decomposition was controlled primarily by temperature during wet periods and by the combined effect of water and temperature during dry periods. Secondary control was provided by the presence/absence of plant derived C inputs (exudation). Further analyses of SOM decomposition suggest that factors such as changes in the decomposer community, stress‐induced changes in the metabolic activity of decomposers or SOM stabilization patterns remain unresolved, but should also be considered in future SOM decomposition studies. Observations and confounding factors associated with SOM decomposition patterns and its temperature sensitivity are summarized in the modeling framework.  相似文献   

7.
全球气候变暖对凋落物分解的影响   总被引:6,自引:0,他引:6  
宋飘  张乃莉  马克平  郭继勋 《生态学报》2014,34(6):1327-1339
凋落物分解作为生态系统核心过程,参与生态系统碳的周转与循环,影响生态系统碳的收支平衡,调控生态系统对全球气候变暖的反馈结果。全球气候变暖通过环境因素、凋落物数量和质量以及分解者3个方面,直接或间接地作用于凋落物分解过程,并进一步影响土壤养分周转和碳库动态。气候变暖可通过升高温度和改变实际蒸散量等环境因素直接作用于凋落物分解。气候变暖可引起植物物种短期内碳、氮和木质素等化学性质的改变以及群落中物种组成的长期变化从而改变凋落物质量。在凋落物分解过程中,土壤分解者亚系统作为主要生命组分(土壤动物和微生物)彼此相互作用、相互协调共同参与调节凋落物的分解过程。凋落物分解可以通过改变土壤微生物量、微生物活动和群落结构来加快微生物养分的固定或矿化,以形成新的养分利用模式来改变土壤有机质从而对气候变化做出响应。未来凋落物分解的研究方向应基于大尺度跨区域分解实验和长期实验,关注多个因子交互影响下,分解过程中碳、氮养分释放、地上/地下凋落物分解生物学过程与联系、分解者亚系统营养级联效应等方面。  相似文献   

8.
Litterfall and litter decomposition are key elements of nutrient cycling in tropical forests, a process in which decomposer communities such as macro-arthropods play a critical role. Understanding the rate and extent to which ecosystem function and biodiversity recover during succession is useful to managing the growing area of tropical successional forest globally. Using a replicated chronosequence of forest succession (5–15, 15–30, 30–45 years, and primary forest) on abandoned pastures in lowland tropical wet forest, we examined litterfall, litter chemistry, and effects of macro-arthropod exclusion on decomposition of two litter types (primary and 5- to 15-years-old secondary forest). Further, we assessed macro-arthropod diversity and community composition across the chronosequence. Overstory cover, litterfall, and litter nutrients reached levels similar to primary forest within 15–30 years. Young secondary forest litter (5–15 years) had lower initial N and P content, higher C:N, and decayed 60 percent faster than primary forest litter. The presence of macro-arthropods strongly mediated decomposition and nutrient release rates, increasing litter mass loss by 35–44 percent, N released by 53 percent, and P release by 84 percent. Forest age had no effect on soil nutrients, rates of litter decomposition, nutrient release, or macro-arthropod influence. In contrast, abundance and community composition of macro-arthropods remained significantly lower and distinct in all ages of secondary compared with primary forest. Order richness was lower in 5–15 years of secondary compared with primary forest. Our results suggest that in highly productive tropical wet forest, functional recovery of litter dynamics precedes recovery of decomposer community structure and biodiversity.  相似文献   

9.
Elevated temperature has potential to influence the biological mechanisms regulating ecosystem–atmosphere carbon exchange. The relationship between warming and heterotrophic microbial respiration remains poorly understood, not least in terms of the differential sensitivity of microbial groups to temperature and the complexity of interactions with other biota. Cord‐forming basidiomycete fungi are dominant primary decomposers in temperate woodland. Decomposition rates are determined by the composition of the decomposer community, ecophysiological relationships between these fungi and abiotic variables and interactions with other organisms. Amongst the latter, a major determinant is the balance between mycelial growth and removal by soil invertebrate grazers, which can themselves be affected by elevated temperature. We investigated the impact of elevated temperature on fungal foraging and decomposition of beech (Fagus sylvatica) wood in soil microcosms to which the invertebrate grazers, Folsomia candida and Protophorura armata (Collembola), were added in factorial combinations with five basidiomycete fungi. Species‐specific impacts on mycelial development and function resulted from differential sensitivity of fungi to warming and grazing. Temperature impacts on collembola abundance were resource‐specific, causing increased grazing pressure by both species, but on different fungi. Grazing often counteracted warming‐induced stimulation of mycelial growth, but occasionally amplified the temperature effect, with implications for colonization rates of new resources. High grazing pressure did not prevent increased fungal‐mediated decomposition of colonized wood, as fungi utilized more resource‐derived energy to maintain explorative growth. Impacts of elevated temperature on decomposition are likely to depend on local composition of the fungal and invertebrate decomposer community.  相似文献   

10.
Eisenhauer N  Schädler M 《Oecologia》2011,165(2):403-415
The intensive discussion on the importance of biodiversity for the stability of essential processes in ecosystems has prompted a multitude of studies since the middle of the last century. Nevertheless, research has been extremely biased by focusing on the producer level, while studies on the impacts of decomposer diversity on the stability of ecosystem functions are lacking. Here, we investigate the impacts of decomposer diversity on the stability (reliability) of three important aboveground and belowground ecosystem functions: primary productivity (shoot and root biomass), litter decomposition, and herbivore infestation. For this, we analyzed the results of three laboratory experiments manipulating decomposer diversity (1–3 species) in comparison to decomposer-free treatments in terms of variability of the measured variables. Decomposer diversity often significantly but inconsistently affected the stability of all aboveground and belowground ecosystem functions investigated in the present study. While primary productivity was mainly destabilized, litter decomposition and aphid infestation were essentially stabilized by increasing decomposer diversity. However, impacts of decomposer diversity varied between plant community and fertility treatments. There was no general effect of the presence of decomposers on stability and no trend toward weaker effects in fertilized communities and legume communities. This indicates that impacts of decomposers are based on more than effects on nutrient availability. Although inconsistent impacts complicate the estimation of consequences of belowground diversity loss, underpinning mechanisms of the observed patterns are discussed. Impacts of decomposer diversity on the stability of essential ecosystem functions differed between plant communities of varying composition and fertility, implicating that human-induced changes of biodiversity and land-use management might have unpredictable effects on the processes mankind relies on. This study therefore points to the necessity of also considering soil feedback mechanisms in order to gain a comprehensive and holistic understanding of the impacts of current global change phenomena on the stability of essential ecosystem functions.  相似文献   

11.
Home-field advantage (HFA) hypothesis regarding litter decomposition states that litter is decomposed more rapidly in the habitat from which it is derived (i.e., home) than in other habitat (i.e., away) due to local adaptation of soil decomposers. We tested the HFA hypothesis regarding decomposition of leaf litter, insect frass, and their mixtures, using laboratory incubation of leaf litter from an evergreen (Pinus densiflora) and a deciduous (Quercus acutissima) tree species, frass excreted by two insect herbivores (Dendrolimus spectabilis and Lymantria dispar) fed on one of the two trees, and soil collected underneath the two trees. We found evidence that decomposers in each soil were specialized to decompose the litter derived from the tree species above them, indicating that the HFA occurred in litter decomposition. In contrast, the HFA was not detected in the decomposition of insect frass or litter-frass mixtures. Mixing with D. spectabilis frass non-additively decelerated, while mixing with L. dispar frass non-additively accelerated, decomposition of the mixtures, independent of soil and litter types. These indicate that the presence of insect herbivores may make it difficult to form and maintain a decomposer community specialized to a certain leaf litter, and that it may consequently cancel or weaken HFA in litter decomposition.  相似文献   

12.
Litter decomposition is an important ecosystem process regulated by both biotic factors (e.g., decomposers and litter types) and abiotic factors (e.g., temperature and moisture). This study examined the regulatory effects of soil fauna and microclimate on decomposition of two substrates (Castanopsis carlesii and Pinus taiwanensis) along an elevation gradient in four ecosystems of zonal vegetation types in southeastern China: evergreen broadleaf forest (EVB), coniferous forest (COF), dwarf forest (DWF), and alpine meadow (ALM). Our objective was to identify the mechanisms by which microclimate, substrate, and fauna control litter decomposition, especially where variations in ecosystem structure and environment are markedly shown across an elevation gradient. The hypotheses were as follows: (1) litter decomposition within the same litter type would decrease across the elevation gradient, (2) litter decomposition would be lower in poorer nutrient quality substrate across the four sites, and (3) litter dynamics, influenced by strong interactions among ecosystem type, litter type, and decomposers, would vary by elevation gradient due to microclimate effects (i.e., temperature and moisture). The decomposition rates of C. carlesii were significantly higher than those of P. taiwanensis at EVB, COF, and DWF sites; however, they were not significantly different at the ALM site. Low elevation forests possessed a microclimate (warm and humid) that favors decomposer activities and also appeared to possess a decomposer community adapted to consuming large amounts of leaf litter, as indicated by the rapid leaf litter loss. Litter decomposition in micro-mesh bags proceeded more slowly compared to litter in meso-mesh and macro-mesh litterbags across the elevation gradient, indicating that restricting some detritivore access to litter reduced litter mass loss. We suggest that microclimate and faunal contributions to plant litter decomposition differ markedly across the ecosystems in the Wuyi Mountains.  相似文献   

13.
The functioning and structure of terrestrial ecosystems are shaped and maintained by plant–decomposer interactions. The food and habitat of animal populations are biogenic and are mainly of plant origin (plant litter) in terrestrial ecosystems. Primary resources of the food-habitat template for the organization of soil animals are provided by the primary production of plants, and are then modified through decomposition processes by microbial populations. In the microbial decomposition system, the efficiency of carbon utilization by microbial decomposers characterizes the decomposition processes between tropical and temperate forest ecosystems. Tropical forests show poor development of soil reservoir systems because of the high efficiency of lignin decomposition by microbial populations. The decomposition processes of leaf litter are described briefly for the understanding of organization of soil animal communities in tropical and temperate forests. A comparison of decomposition processes shows qualitative differences in decomposition between temperate and tropical forests. The composition of functional groups of soil animals is well explained by the decomposition processes in both forests.  相似文献   

14.
The Guild Decomposition Model (GDM) hypothesized that temporal shifts in microbial “guilds,” each with distinct substrate preferences, drive decomposition dynamics and regulate soil carbon (C) losses and sequestration. To test this hypothesis, we established a laboratory incubation of Acer saccharum litter and monitored respiration, microbial biomass and enzyme activities, inorganic nutrients and shifts in functional groups of decomposers using phospholipid fatty acid (PLFA) analysis. Biomass and respiration peaked within the first 2 d of incubation, and the Gram negative PLFA biomarker 18:1ω7c predominated during the first 5 d. Hydrolytic enzyme activities and two fungal biomarkers (18:2ω6,9c and 18:3ω6c) increased by 25 d and lignolytic enzyme activity was detected at 68 d. Our results suggest that decomposers preferentially use labile substrates and that shifts in decomposer groups occur in response to changes in available substrates, which supports the GDM.  相似文献   

15.
季节性雪被变化对森林凋落物分解及土壤氮动态的影响   总被引:2,自引:0,他引:2  
全球气候变化引发的雪被格局变化将深刻影响植被的凋落物分解、陆地生态系统的土壤养分循环等过程.森林是陆地生态系统的主体,在全球生物地球化学循环中起着不可替代的作用.本研究综述了季节性雪被变化对森林凋落物分解及土壤氮动态的影响.全球气候变化情景下季节性雪被表现出因地域而异的增加或减少的变化格局,一方面通过改变环境温湿度、凋落物质量、分解者动态等直接影响分解过程,另一方面通过改变森林群落结构、植被物候、土壤养分等间接地作用于凋落物分解.同时,季节性雪被通过影响氮富集作用、雪被下土壤温湿度、冻融循环、森林群落、雪下动物和微生物等相关因子而改变森林土壤氮循环.本领域未来应开展的研究是: 1) 全面考虑全球气候变化情景下季节性雪被格局的变异性,开展不同季节性雪被格局变化的模拟研究;2) 开展季节性雪被融雪水淋溶作用对森林凋落物分解和土壤氮动态的影响研究;3) 阐明不同生态系统和气候带中季节性雪被格局变化对森林凋落物分解过程和土壤氮动态的驱动机制研究;4) 量化季节性雪被变化对森林凋落物分解和土壤氮动态在雪被覆盖期的瞬时影响和无雪期的延续影响,为阐明和模型预测陆地生态系统生物地球化学循环对全球气候变化的响应提供理论基础和数据支持.  相似文献   

16.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   

17.
Tierra del Fuego, Argentina (55°S), receives increased solar ultraviolet‐B radiation (UV‐B) as a result of Antarctic stratospheric ozone depletion. We conducted a field study to examine direct and indirect effects of solar UV‐B radiation on decomposition of Gunnera magellanica, a native perennial herb, and on the native community of decomposer organisms. In general, indirect effects of UV‐B mostly occur due to changes in the chemical composition of litter, whereas direct effects during decomposition result from changes in decomposer organisms and/or differences in the photochemical breakdown of litter. We designed a full‐factorial experiment using senescent leaves that had received either near‐ambient or attenuated UV‐B during growth. The leaves were distributed in litterbags and allowed to decompose under near‐ambient or reduced solar UV‐B during the growing season. We evaluated initial litter quality, mass loss, and nutrient release of decomposing litter, and microbial colonization of both initial litter and decomposed litter. We found that litter that decomposed under near‐ambient UV‐B had significantly less mass loss than litter that decomposed under reduced UV‐B. The UV‐B conditions received by plants during growth, which did not affect mass loss and nutrient composition of litter, affected fungal species composition but in different ways throughout the decomposition period. Before the decomposition trial, Beauveria bassiana and Penicillium frequentans were higher under reduced UV‐B, whereas Cladosporium herbarum and pigmented bacteria were more common under the near‐ambient compared to the reduced UV‐B treatment. After the decomposition period, leaves that had grown under reduced UV‐B showed higher frequency of Penicillium thomii and lower frequency of Trichoderma polysporum than leaves that had grown under near‐ambient conditions. The UV‐B condition received during decomposition also affected fungal colonization, with Penicillium chrysogenum being more frequent in leaves that had decomposed under reduced UV‐B, while the other species were not affected. Our results demonstrate that, in this ecosystem, the effects of UV‐B radiation on decomposition apparently occurred mostly through changes in the fungal community, while changes in photochemical breakdown appeared to be less important.  相似文献   

18.
Climate change and changes in land use will alter the stores of carbon and turnover of soil organic matter. We have used a theory for carbon cycles in terrestrial ecosystems to analyse changes in soil organic matter turnover in coniferous forests. The central concepts of the theory are a continuously changing substrate quality, a constant decomposer efficiency and a climatically controlled decomposer growth rate. Measurements on litter production and soil carbon stores from field experiments have been used to successfully validate the model predictions. Measured litter production increased with increasing temperature but the response was not identical for forests of different vegetation types which reflect variations in productivity. The temperature response of needle-litter production and decomposition rate were strongest in the most productive forests and weakest for the low productive forests. Initial decay rates of soil C store from steady state showed the same trend in temperature response as decay of a single litter cohort did, but the absolute values are 16% of the decay rates of a single litter cohort. Predicted soil C ranged from 5 to 9 kg C m–2. There exists a remarkable variation in forest soil C store response to temperature; the magnitude and even the sign depends on productivity as defined by vegetation type. The assumption that, in general, decomposition rates increase more than NPP with temperature, and consequently, soil C stores should decrease in response to a climate warming, seems therefore too simplistic.  相似文献   

19.
王文君  杨万勤  谭波  刘瑞龙  吴福忠 《生态学报》2013,33(18):5737-5750
为了解植物生长不同物候时期凋落物分解过程中土壤动物群落结构动态及其与凋落物分解的关系,以四川盆地亚热带常绿阔叶林典型人工林树种马尾松和柳杉,次生林树种香樟和麻栎凋落物为研究对象,采用凋落物分解袋试验研究,凋落物分解过程中土壤动物的群落特征。4种凋落物分解袋共获得土壤动物8047只,其中,柳杉(2341只)>香樟(2105只)>马尾松(2046只)>麻栎(1555只)。其中,秋末落叶期、萌动期和展叶期,马尾松凋落物袋中主要以捕食性土壤动物为优势类群,而后以菌食性土壤动物为主;香樟凋落物袋中除秋末落叶期和叶衰期以菌食性土壤动物为主要优势类群外,其他各时期均以捕食性土壤动物为主要优势类群;柳杉凋落物分解各时期均以菌食性土壤动物为主要优势类群;麻栎凋落物分解在前3个时期以菌食性为主,而后以植食性土壤动物为主要优势类群。相关分析表明,在秋末落叶期和萌动期土壤动物的个体密度主要和氮、磷含量及其格局密切相关,叶衰期主要和难分解组分木质素显著相关。除在秋末落叶期土壤动物对凋落物分解的贡献率与土壤动物的个体密度显著相关外,其余主要物候关键时期均与土壤动物的类群密度及其食性显著相关。  相似文献   

20.
Land‐use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land‐use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land‐use legacies with current management and litter quality. To evaluate how land‐use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape‐scale litterbag decomposition experiment. We proposed land‐use legacies regulate decomposition, but their effects are weakened under higher quality litter and when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号