首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Meneghini MD  Wu M  Madhani HD 《Cell》2003,112(5):725-736
Boundary elements hinder the spread of heterochromatin, yet these sites do not fully account for the preservation of adjacent euchromatin. Histone variant H2A.Z (Htz1 in yeast) replaces conventional H2A in many nucleosomes. Microarray analysis revealed that HTZ1-activated genes cluster near telomeres. The reduced expression of most of these genes in htz1Delta cells was reversed by the deletion of SIR2 (sir2Delta) suggesting that H2A.Z antagonizes telomeric silencing. Other Htz1-activated genes flank the silent HMR mating-type locus. Their requirement for Htz1 can be bypassed by sir2Delta or by a deletion encompassing the silencing nucleation sites in HMR. In htz1Delta cells, Sir2 and Sir3 spread into flanking euchromatic regions, producing changes in histone H4 acetylation and H3 4-methylation indicative of ectopic heterochromatin formation. Htz1 is enriched in these euchromatic regions and acts synergistically with a boundary element to prevent the spread of heterochromatin. Thus, euchromatin and heterochromatin each contains components that antagonize switching to the opposite chromatin state.  相似文献   

3.
4.
Histone protein post-translational modifications (PTMs) are significant for gene expression and DNA repair. Here we report the identification and validation of a new type of PTM in histones, lysine succinylation. The identified lysine succinylated histone peptides were verified by MS/MS of synthetic peptides, HPLC co-elution, and isotopic labeling. We identified 13, 7, 10, and 7 histone lysine succinylation sites in HeLa, mouse embryonic fibroblast, Drosophila S2, and Saccharomyces cerevisiae cells, respectively. We demonstrated that this histone PTM is present in all eukaryotic cells we examined. Mutagenesis of succinylation sites followed by functional assays implied that histone lysine succinylation can cause unique functional consequences. We also identified one and two histone lysine malonylation sites in HeLa and S. cerevisiae cells, respectively. Our results therefore increase potential combinatorial diversity of histone PTMs and suggest possible new connections between histone biology and metabolism.  相似文献   

5.
Effects of tethering HP1 to euchromatic regions of the Drosophila genome   总被引:7,自引:0,他引:7  
Heterochromatin protein 1 (HP1) is a conserved non-histone chromosomal protein enriched in heterochromatin. On Drosophila polytene chromosomes, HP1 localizes to centric and telomeric regions, along the fourth chromosome, and to specific sites within euchromatin. HP1 associates with centric regions through an interaction with methylated lysine nine of histone H3, a modification generated by the histone methyltransferase SU(VAR)3-9. This association correlates with a closed chromatin configuration and silencing of euchromatic genes positioned near heterochromatin. To determine whether HP1 is sufficient to nucleate the formation of silent chromatin at non-centric locations, HP1 was tethered to sites within euchromatic regions of Drosophila chromosomes. At 25 out of 26 sites tested, tethered HP1 caused silencing of a nearby reporter gene. The site that did not support silencing was upstream of an active gene, suggesting that the local chromatin environment did not support the formation of silent chromatin. Silencing correlated with the formation of ectopic fibers between the site of tethered HP1 and other chromosomal sites, some containing HP1. The ability of HP1 to bring distant chromosomal sites into proximity with each other suggests a mechanism for chromatin packaging. Silencing was not dependent on SU(VAR)3-9 dosage, suggesting a bypass of the requirement for histone methylation.  相似文献   

6.
7.
Nisha P  Plank JL  Csink AK 《Genetics》2008,179(1):359-373
While heterochromatic gene silencing in cis is often accompanied by nucleosomal compaction, characteristic histone modifications, and recruitment of heterochromatin proteins, little is known concerning genes silenced by heterochromatin in trans. An insertion of heterochromatic satellite DNA in the euchromatic brown (bw) gene of Drosophila melanogaster results in bwDominant (bwD), which can inactivate loci on the homolog by relocation near the centric heterochromatin (trans-inactivation). Nucleosomal compaction was found to accompany trans-inactivation, but stereotypical heterochromatic histone modifications were mostly absent on silenced reporter genes. HP1 was enriched on trans-inactivated reporter constructs and this enrichment was more pronounced on adult chromatin than on larval chromatin. Interestingly, this HP1 enrichment in trans was unaccompanied by an increase in the 2MeH3K9 mark, which is generally thought to be the docking site for HP1 in heterochromatin. However, a substantial increase in the 2MeH3K9 mark was found on or near the bwD satellite insertion in cis, but did not spread further. These observations suggest that the interaction of HP1 with chromatin in cis is fundamentally different from that in trans. Our molecular data agree well with the differential phenotypic effect on bwD trans-inactivation of various genes known to be involved in histone modification and cis gene silencing.  相似文献   

8.
9.
Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date.  相似文献   

10.
11.
Heterochromatin Protein 1 (HP1) is a structural component of silent chromatin at telomeres and centromeres. Euchromatic genes repositioned near heterochromatin by chromosomal rearrangements are typically silenced in an HP1-dependent manner. Silencing is thought to involve the spreading of heterochromatin proteins over the rearranged genes. HP1 associates with centric heterochromatin through an interaction with methylated lysine 9 of histone H3, a modification generated by SU(VAR)3-9. The current model for spreading of silent chromatin involves HP1-dependent recruitment of SU(VAR)3-9, resulting in the methylation of adjacent nucleosomes and association of HP1 along the chromatin fiber. To address mechanisms of silent chromatin formation and spreading, HP1 was fused to the DNA-binding domain of the E. coli lacI repressor and expressed in Drosophila melanogaster stocks carrying heat shock reporter genes positioned 1.9 and 3.7 kb downstream of lac operator repeats. Association of lacI-HP1 with the repeats resulted in silencing of both reporter genes and correlated with a closed chromatin structure consisting of regularly spaced nucleosomes, similar to that observed in centric heterochromatin. Chromatin immunoprecipitation experiments demonstrated that HP1 spread bi-directionally from the tethering site and associated with the silenced reporter transgenes. To examine mechanisms of spreading, the effects of a mutation in Su(var)3-9 were investigated. Silencing was minimally affected at 1.9 kb, but eliminated at 3.7 kb, suggesting that HP1-mediated silencing can operate in a SU(VAR)3-9-independent and -dependent manner.  相似文献   

12.
13.
14.

Background  

The phenotype of an organism is an outcome of both its genotype, encoding the primary sequence of proteins, and the developmental orchestration of gene expression. The substrate of gene expression in eukaryotes is the chromatin, whose fundamental units are nucleosomes composed of DNA wrapped around each two of the core histone types H2A, H2B, H3 and H4. Key regulatory steps involved in the determination of chromatin conformations are posttranslational modifications (PTM) at histone tails as well as the assembly of histone variants into nucleosomal arrays. Although the mechanistic background is fragmentary understood, it appears that the chromatin signature of metazoan cell types is inheritable over generations. Even less understood is the conservation of epigenetic mechanisms among eukaryotes and their origins.  相似文献   

15.
16.
17.
HP1 proteins are central to the assembly and spread of heterochromatin containing histone H3K9 methylation. The chromodomain (CD) of HP1 proteins specifically recognizes the methyl mark on H3 peptides, but the same extent of specificity is not observed within chromatin. The chromoshadow domain of HP1 proteins promotes homodimerization, but this alone cannot explain heterochromatin spread. Using the S. pombe HP1 protein, Swi6, we show that recognition of H3K9-methylated chromatin in vitro relies on an interface between two CDs. This interaction causes Swi6 to tetramerize on a nucleosome, generating two vacant CD sticky ends. On nucleosomal arrays, methyl mark recognition is highly sensitive to internucleosomal distance, suggesting that the CD sticky ends bridge nearby methylated nucleosomes. Strengthening the CD-CD interaction enhances silencing and heterochromatin spread in vivo. Our findings suggest that recognition of methylated nucleosomes and HP1 spread on chromatin are structurally coupled and imply that methylation and nucleosome arrangement synergistically regulate HP1 function.  相似文献   

18.
19.
Heterochromatin protein 1 (HP1) proteins, recognized readers of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me), are important regulators of heterochromatin-mediated gene silencing and chromosome structure. In Drosophila melanogaster three histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9: Su(var)3-9, Setdb1, and G9a. To probe the dependence of HP1a binding on H3K9me, its dependence on these three HKMTs, and the division of labor between the HKMTs, we have examined correlations between HP1a binding and H3K9me patterns in wild type and null mutants of these HKMTs. We show here that Su(var)3-9 controls H3K9me-dependent binding of HP1a in pericentromeric regions, while Setdb1 controls it in cytological region 2L:31 and (together with POF) in chromosome 4. HP1a binds to the promoters and within bodies of active genes in these three regions. More importantly, however, HP1a binding at promoters of active genes is independent of H3K9me and POF. Rather, it is associated with heterochromatin protein 2 (HP2) and open chromatin. Our results support a hypothesis in which HP1a nucleates with high affinity independently of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites.  相似文献   

20.
发育是由基因的特定时空表达模式来调控的,其表观遗传机制已越来越受到关注。组蛋白精氨酸甲基化是一种重要的翻译后修饰,由蛋白质精氨酸甲基化酶催化产生,对染色体的结构与功能具有重要调控作用。不同位点的精氨酸甲基化与其相邻位点的翻译后修饰具有复杂的对话机制,并可招募或阻碍相关效应分子的结合,进而导致转录激活或抑制。斑马鱼作为一种重要的发育生物学研究模式动物,已为蛋白质精氨酸甲基化酶在早期发育过程中的生理功能的研究提供了大量资料。该文对组蛋白精氨酸甲基化的产生、对话调控机制及其对斑马鱼早期发育调控功能的研究进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号