首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A characteristic feature of tRNAs is the numerous modifications found throughout their sequences, which are highly conserved and often have important roles. Um(44) is highly conserved among eukaryotic cytoplasmic tRNAs with a long variable loop and unique to tRNA(Ser) in yeast. We show here that the yeast ORF YPL030w (now named TRM44) encodes tRNA(Ser) Um(44) 2'-O-methyltransferase. Trm44 was identified by screening a yeast genomic library of affinity purified proteins for activity and verified by showing that a trm44-delta strain lacks 2'-O-methyltransferase activity and has undetectable levels of Um(44) in its tRNA(Ser) and by showing that Trm44 purified from Escherichia coli 2'-O-methylates U(44) of tRNA(Ser) in vitro. Trm44 is conserved among metazoans and fungi, consistent with the conservation of Um(44) in eukaryotic tRNAs, but surprisingly, Trm44 is not found in plants. Although trm44-delta mutants have no detectable growth defect, TRM44 is required for survival at 33 degrees C in a tan1-delta mutant strain, which lacks ac(4)C12 in tRNA(Ser) and tRNA(Leu). At nonpermissive temperature, a trm44-delta tan1-delta mutant strain has reduced levels of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), but not other tRNA(Ser) or tRNA(Leu) species. The trm44-delta tan1-delta growth defect is suppressed by addition of multiple copies of tRNA(Ser(CGA)) and tRNA(Ser(UGA)), directly implicating these tRNA(Ser) species in this phenotype. The reduction of specific tRNA(Ser) species in a trm44-delta tan1-delta mutant underscores the importance of tRNA modifications in sustaining tRNA levels and further emphasizes that tRNAs undergo quality control.  相似文献   

2.
The N1-methyl-Adenosine (m1A58) modification at the conserved nucleotide 58 in the TΨC loop is present in most eukaryotic tRNAs. In yeast, m1A58 modification is essential for viability because it is required for the stability of the initiator-tRNAMet. However, m1A58 modification is not required for the stability of several other tRNAs in yeast. This differential m1A58 response for different tRNA species raises the question of whether some tRNAs are hypomodified at A58 in normal cells, and how hypomodification at A58 may affect the stability and function of tRNA. Here, we apply a genomic approach to determine the presence of m1A58 hypomodified tRNAs in human cell lines and show how A58 hypomodification affects stability and involvement of tRNAs in translation. Our microarray-based method detects the presence of m1A58 hypomodified tRNA species on the basis of their permissiveness in primer extension. Among five human cell lines examined, approximately one-quarter of all tRNA species are hypomodified in varying amounts, and the pattern of the hypomodified tRNAs is quite similar. In all cases, no hypomodified initiator-tRNAMet is detected, consistent with the requirement of this modification in stabilizing this tRNA in human cells. siRNA knockdown of either subunit of the m1A58-methyltransferase results in a slow-growth phenotype, and a marked increase in the amount of m1A58 hypomodified tRNAs. Most m1A58 hypomodified tRNAs can associate with polysomes in varying extents. Our results show a distinct pattern for m1A58 hypomodification in human tRNAs, and are consistent with the notion that this modification fine tunes tRNA functions in different contexts.  相似文献   

3.
The 3-methylcytidine (m3C) modification is widely found in eukaryotic species of tRNA(Ser), tRNA(Thr), and tRNA(Arg); at residue 32 in the anti-codon loop; and at residue e2 in the variable stem of tRNA(Ser). Little is known about the function of this modification or about the specificity of the corresponding methyltransferase, since the gene has not been identified. We have used a primer extension assay to screen a battery of methyltransferase candidate knockout strains in the yeast Saccharomyces cerevisiae, and find that tRNA(Thr(IGU)) from abp140-Δ strains lacks m3C. Curiously, Abp140p is composed of a poorly conserved N-terminal ORF fused by a programed +1 frameshift in budding yeasts to a C-terminal ORF containing an S-adenosylmethionine (SAM) domain that is highly conserved among eukaryotes. We show that ABP140 is required for m3C modification of substrate tRNAs, since primer extension is similarly affected for all tRNA species expected to have m3C and since quantitative analysis shows explicitly that tRNA(Thr(IGU)) from an abp140-Δ strain lacks m3C. We also show that Abp140p (now named Trm140p) purified after expression in yeast or Escherichia coli has m3C methyltransferase activity, which is specific for tRNA(Thr(IGU)) and not tRNA(Phe) and occurs specifically at C??. We suggest that the C-terminal ORF of Trm140p is necessary and sufficient for activity in vivo and in vitro, based on analysis of constructs deleted for most or all of the N-terminal ORF. We also suggest that m3C has a role in translation, since trm140-Δ trm1-Δ strains (also lacking m2,2G??) are sensitive to low concentrations of cycloheximide.  相似文献   

4.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

5.
6.
7.
8.
Repair of tRNAs in metazoan mitochondria   总被引:3,自引:1,他引:2  
  相似文献   

9.
All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5’-3’ exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3’-5’ exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.  相似文献   

10.
Rapid tRNA decay can result from lack of nonessential modifications   总被引:10,自引:0,他引:10  
The biological role of many nonessential tRNA modifications outside of the anticodon remains elusive despite their evolutionary conservation. We show here that m7G46 methyltransferase Trm8p/Trm82p acts as a hub of synthetic interactions with several tRNA modification enzymes, resulting in temperature-sensitive growth. Analysis of three double mutants indicates reduced levels of tRNA(Val(AAC)), consistent with a role of the corresponding modifications in maintenance of tRNA levels. Detailed examination of a trm8-delta trm4-delta double mutant demonstrates rapid degradation of preexisting tRNA(Val(AAC)) accompanied by its de-aminoacylation. Multiple copies of tRNA(Val(AAC)) suppress the trm8-delta trm4-delta growth defect, directly implicating this tRNA in the phenotype. These results define a rapid tRNA degradation (RTD) pathway that is independent of the TRF4/RRP6-dependent nuclear surveillance pathway. The degradation of an endogenous tRNA species at a rate typical of mRNA decay demonstrates a critical role of nonessential modifications for tRNA stability and cell survival.  相似文献   

11.
12.
13.
14.
Joern Pütz 《FEBS letters》2010,584(2):350-358
Transfer RNAs (tRNAs) are ancient macromolecules that have evolved under various environmental pressures as adaptors in translation in all forms of life but also towards alternative structures and functions. The present knowledge on both “canonical” and “deviating” signature motifs retrieved from vertical and horizontal sequence comparisons is briefly reviewed. Novel characteristics, proper to tRNAs from a given translation system, are revealed by a case study on the nuclear and organellar tRNA sets from malaria-related organisms. Unprecedented distinctive features for Plasmodium falciparum apicoplastic tRNAs appear, which provide novel routes to be explored towards anti-malarial drugs. The ongoing high-throughput sequencing programs are expected to allow for further horizontal comparisons and to reveal other signatures of either full or restricted sets of tRNAs.  相似文献   

15.
16.
Characterizing Sec tRNAs that decode UGA provides one of the most direct and easiest means of determining whether an organism possesses the ability to insert selenocysteine (Sec) into protein. Herein, we used a combination of two techniques, computational to identify Sec tRNA genes and RT-PCR to sequence the gene products, to unequivocally demonstrate that two widely studied, model protozoans, Dictyostelium discoideum and Tetrahymena thermophila, encode Sec tRNA in their genomes. The advantage of using both procedures is that computationally we could easily detect potential Sec tRNA genes and then confirm by sequencing that the Sec tRNA was present in the tRNA population, and thus the identified gene was not a pseudogene. Sec tRNAs from both organisms decode UGA. T. thermophila Sec tRNA, like all other sequenced Sec tRNAs, is 90 nucleotides in length, while that from D. discoideum is 91 nucleotides long making it the longest eukaryotic sequenced to date. Evolutionary analyses of known Sec tRNAs reveal the two forms identified herein are the most divergent eukaryotic Sec tRNAs thus far sequenced.  相似文献   

17.
K Zerfass  H Beier 《The EMBO journal》1992,11(11):4167-4173
RNA-1 molecules from tobacco rattle virus (TRV) and pea early-browning virus (PEBV), two members of the tobravirus group, have recently been shown to contain internal, in-frame UGA termination codons which are suppressed in vitro. Our results suggest that a UGA stop codon also exists in RNA-1 of pepper ringspot virus (PRV), another tobravirus. UGA suppression may therefore be a universal feature of the expression of tobravirus genomes. We have isolated two natural suppressor tRNAs from uninfected tobacco plants on the basis of their ability to promote readthrough over the leaky UGA codon of TRV RNA-1 in a wheat germ extract depleted of endogenous mRNAs and tRNAs. Their amino acid acceptance and nucleotide sequences identify the two UGA-suppressor tRNAs as chloroplast (chl) and cytoplasmic (cyt) tryptophan-specific tRNAs with the anticodon CmCA. These are the first UGA suppressor tRNAs to be identified in plants. They have several interesting features. (i) Chl tRNA(Trp) suppresses the UGA stop codon more efficiently than cyt tRNA(Trp). (ii) Chl tRNA(Trp) contains an A24:U11 pair in the D-stem as does the mutated Escherichia coli UGA-suppressor tRNA(Trp) which is a more active suppressor than wild-type tRNA(Trp). (iii) The suppressor activity of chl tRNA(Trp) is dependent on the nucleotides surrounding the stop codon because it recognizes UGA in the TRV context but not the UGA in the beta-globin context.  相似文献   

18.
Mature tRNA 3′ ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3′ endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3′ processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3′-end processing of precursors with long 3′ trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3′ ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.  相似文献   

19.
Pathogenic mutations in mitochondrial tRNAs are 6.5 times more frequent than in other mitochondrial genes. This suggests that tRNA mutations perturb more than one function. A potential additional tRNA gene function is that of templating for antisense tRNAs. Pathogenic mutations weaken cloverleaf secondary structures of sense tRNAs. Analyses here show similar effects for most antisense tRNAs, especially after adjusting for associations between sense and antisense cloverleaf stabilities. These results imply translational activity by antisense tRNAs. For sense tRNAs Ala and Ser UCN, pathogenicity associates as much with sense as with antisense cloverleaf formation. For tRNA Pro, pathogenicity seems associated only with antisense, not sense tRNA cloverleaf formation. Translational activity by antisense tRNAs is expected for the 11 antisense tRNAs processed by regular sense RNA maturation, those recognized by their cognate amino acid’s tRNA synthetase, and those forming relatively stable cloverleaves as compared to their sense counterpart. Most antisense tRNAs probably function routinely in translation and extend the tRNA pool (extension hypothesis); others do not (avoidance hypothesis). The greater the expected translational activity of an antisense tRNA, the more pathogenic mutations weaken its cloverleaf secondary structure. Some evidence for RNA interference, a more classical role for antisense tRNAs, exists only for tRNA Ser UCN. Mutation pathogenicity probably frequently results from a mixture of effects due to sense and antisense tRNA translational activity for many mitochondrial tRNAs. Genomic studies should routinely explore for translational activity by antisense tRNAs.  相似文献   

20.
Human TRIT1 is a tRNA isopentenyltransferase (IPTase) homologue of Escherichia coli MiaA, Saccharomyces cerevisiae Mod5, Schizosaccharomyces pombe Tit1, and Caenorhabditis elegans GRO-1 that adds isopentenyl groups to adenosine 37 (i6A37) of substrate tRNAs. Prior studies indicate that i6A37 increases translation fidelity and efficiency in codon-specific ways. TRIT1 is a tumor suppressor whose mutant alleles are associated with cancer progression. We report the systematic identification of i6A37-containing tRNAs in a higher eukaryote, performed using small interfering RNA knockdown and other methods to examine TRIT1 activity in HeLa cells. Although several potential substrates contained the IPTase recognition sequence A36A37A38 in the anticodon loop, only tRNASerAGA, tRNASerCGA, tRNASerUGA, and selenocysteine tRNA with UCA (tRNA[Ser]SecUCA) contained i6A37. This subset is a significantly more restricted than that for two distant yeasts (S. cerevisiae and S. pombe), the only other organisms comprehensively examined. Unlike the fully i6A37-modified tRNAs for Ser, tRNA[Ser]SecUCA is partially (∼40%) modified. Exogenous selenium and other treatments that decreased the i6A37 content of tRNA[Ser]SecUCA led to increased levels of the tRNA[Ser]SecUCA. Of the human mitochondrion (mt)-encoded tRNAs with A36A37A38, only mt tRNAs tRNASerUGA and tRNATrpUCA contained detectable i6A37. Moreover, while tRNASer levels were unaffected by TRIT1 knockdown, the tRNA[Ser]SecUCA level was increased and the mt tRNASerUGA level was decreased, suggesting that TRIT1 may control the levels of some tRNAs as well as their specific activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号