首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken beta-globin domain. We observed two sharp transitions of MENT concentration coinciding with the beta-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation.  相似文献   

9.
10.
11.
12.
Originally discovered as epigenetic regulators of developmental gene expression, the Polycomb (PcG) and trithorax (trxG) group of proteins form distinct nuclear complexes governing post-translational modification of histone tails. This study identified a novel, developmentally regulated interface between Eed and Mll, pivotal constituents of PcG and trxG pathways, respectively, in mouse brain. Although the PcG proteins Eed and EzH2 (Enhancer of Zeste protein-2) engaged in a common complex during neurodevelopment, Eed associated with the trxG protein Mll upon brain maturation. Comprehensive analysis of multiple histone modifications revealed differential substrate specificity of the novel Eed-Mll complex in adult brain compared with the developmental Eed-EzH2 complex. Newborn brain from eed heterozygotes and eed;Mll double heterozygotes exhibited decreased trimethylation at lysine 27 of histone H3, as well as hyperacetylation of histone H4. In contrast, adult hippocampus from Mll heterozygotes was remarkable for decreased acetylation of histone H4, which restored to wild-type levels in eed;Mll double heterozygotes. A physiological role for the Eed-Mll complex in adult brain was evident from complementary defects in synaptic plasticity in eed and Mll mutant hippocampi. These results support the notion that developmental regulation of complex composition bestows the predominant Eed complex with the chromatin remodeling activity conducive for gene regulation during neurodevelopment and adult brain function. Thus, this study suggests dynamic regulation of chromatin complex composition as a molecular mechanism to co-opt constituents of developmental pathways into the regulation of neuronal memory formation in adult brain.  相似文献   

13.
14.
15.
16.
17.
Deregulation of the HER2 oncogene occurs in 30% of human breast cancers and correlates with poor prognosis and increased propensity for metastasis. Since the molecular basis of HER2 overexpression in human cancers is not known, we sought to determine whether chromatin remodeling pathways are involved in the regulation of HER2 expression. We report that compared with breast cancer cells expressing a low level of HER2, HER2-overexpressing breast cancer cells contained significantly higher levels of acetylated and phosphorylated histone H3, and acetylated histone H4 associated with the HER2 promoter. Decreased recruitment of histone deacetylases in the promoter is also noted in the HER2-overexpressing cell. The association of acetylated histone H4 with HER2 gene chromatin and HER2 expression in breast cancer cells was upregulated by an inhibitor of histone deacetylases. Treatment with histone deacetylase inhibitor also reduced the association of histone deacetylase-1 and -2 with the HER2 promoter. In addition, the tumor promoters 12-O-tetradecanoylphorbol-13-acetate and okadaic acid stimulated the association of phosphorylated histone H3 on serine 10 with the HER2 promoter and also stimulated HER2 expression. These findings identify histone acetylation and histone phosphorylation as novel regulatory modifications that target HER2 gene chromatin, and suggest that elevated levels of these chromatin-relaxing components in the vicinity of the HER2 gene promoter may constitute an important non-genomic mechanism of HER2 overexpression in human breast cancer.  相似文献   

18.
19.
The INO80 chromatin remodeler is involved in many chromatin-dependent cellular functions. However, its role in pluripotency and cell fate transition is not fully defined. We examined the impact of Ino80 deletion in the naïve and primed pluripotent stem cells. We found that Ino80 deletion had minimal effect on self-renewal and gene expression in the naïve state, but led to cellular differentiation and de-repression of developmental genes in the transition toward and maintenance of the primed state. In the naïve state, INO80 pre-marked gene promoters that would adopt bivalent histone modifications by H3K4me3 and H3K27me3 upon transition into the primed state. In the primed state, in contrast to its known role in H2A.Z exchange, INO80 promoted H2A.Z occupancy at these bivalent promoters and facilitated H3K27me3 installation and maintenance as well as downstream gene repression. Together, our results identified an unexpected function of INO80 in H2A.Z deposition and gene regulation. We showed that INO80-dependent H2A.Z occupancy is a critical licensing step for the bivalent domains, and thereby uncovered an epigenetic mechanism by which chromatin remodeling, histone variant deposition and histone modification coordinately control cell fate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号