首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The effect of prostaglandins on in vitro limb cartilage differentiation   总被引:3,自引:0,他引:3  
A variety of studies indicate that a key event in limb chondrogenic differentiation is a cellular condensation process during which an intimate cell-cell interaction occurs that triggers cartilage differentiation by elevating cAMP levels. It has recently been demonstrated that when limb mesenchymal cells are subjected to high density monolayer culture under conditions conducive to chondrogenesis, they synthesize several prostaglandins, including PGE2 and prostacyclin, which are important local modulators of cAMP formation in a number of cells and tissues. In the present study, we demonstrate that exogenous PGE2 stimulates the in vitro chondrogenic differentiation of the subridge mesoderm of the embryonic chick limb bud. The stimulatory effect of PGE2 is greatly potentiated by the phosphodiesterase inhibitor, theophylline, suggesting its influence on chondrogenesis is mediated by its ability to increase cAMP levels. The stimulatory effect of PGE2 is dose-dependent and can be detected at a concentration as low as 10(-8)M. PGE1 is just as effective as PGE2 in stimulating in vitro chondrogenesis, whereas PGA1 and PGF1 alpha are less than half as effective. Thromboxane B2 has no effect on chondrogenesis. On the basis of our results, the possibility that endogenous prostaglandins might regulate limb cartilage differentiation by acting as local regulators of cAMP content is discussed.  相似文献   

2.
Hyaluronan (HA) is a large glycosaminoglycan that is not only a structural component of extracellular matrices, but also interacts with cell surface receptors to promote cell proliferation, migration, and intracellular signaling. HA is a major component of the extracellular matrix of the distal subapical mesenchymal cells of the developing limb bud that are undergoing proliferation, directed migration, and patterning in response to the apical ectodermal ridge (AER), and has the functional potential to be involved in these processes. Here we show that the HA synthase Has2 is abundantly expressed by the distal subridge mesodermal cells of the chick limb bud and also by the AER itself. Has2 expression and HA production are downregulated in the proximal central core of the limb bud during the formation of the precartilage condensations of the skeletal elements, suggesting that downregulation of HA may be necessary for the close juxtaposition of cells and the resulting cell-cell interactions that trigger cartilage differentiation during condensation. Overexpression of Has2 in the mesoderm of the chick limb bud in vivo results in the formation of shortened and severely malformed limbs that lack one or more skeletal elements. Skeletal elements that do form in limbs overexpressing Has2 are reduced in length, exhibit abnormal morphology, and are positioned inappropriately. We also demonstrate that sustained HA production in micromass cultures of limb mesenchymal cells inhibits formation of precartilage condensations and subsequent chondrogenesis, indicating that downregulation of HA is indeed necessary for formation of the precartilage condensations that trigger cartilage differentiation. Taken together these results suggest involvement of HA in various aspects of limb morphogenesis.  相似文献   

3.
The nicotinamide adenine dinucleotide (NAD) content of mesenchymal cells from the embryonic chick limb has been hypothesized to control the differentiation of these cells by modulation of ADP-ribosylations. To test this hypothesis, [35S]sulfate incorporation into proteoglycans was monitored as an estimate of the chondrogenic expression of cultured limb mesenchymal cells treated with nicotinamide and nicotinic acid to elevate cellular NAD levels or with nicotinamide and benzamide compounds to inhibit ADP-ribosylations. The results of this study indicated that serum component(s) modulate the interactions between these chemical agents and limb mesenchymal cells and, thus, complicate the interpretations of experiments performed in the presence of serum. With a chemically defined medium that promotes limb mesenchymal cell proliferation and differentiation in vitro, it was demonstrated that: (1) no clear correlation exists between cellular NAD content and the chondrogenic expression of cultured limb mesenchymal cells, (2) nicotinamide and benzamide compounds reduce cell proliferation and, at the higher doses tested, considerably reduce chondrogenesis in limb mesenchymal cell cultures, and (3) limb mesenchymal cells exhibit an enhanced susceptibility to benzamide compounds at a time very early in the culture period which temporally coincides with a transient increase in cellular ADP-ribosylation activity and initial chondrogenic differentiation. These results suggest that NAD does not control the differentiation of limb mesenchymal cells and that ADP-ribosylations are an integral, though not controlling, component of limb mesenchyme cytodifferentiation. A model is presented which proposes a role for ADP-ribosylations during the differentiation of limb mesenchymal cells.  相似文献   

4.
5.
Gap junctional communication during limb cartilage differentiation   总被引:4,自引:0,他引:4  
The onset of cartilage differentiation in the developing limb bud is characterized by a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely apposed to one another prior to initiating cartilage matrix deposition. During this condensation process intimate cell-cell interactions occur which are necessary to trigger chondrogenic differentiation. In the present study, we demonstrate that extensive cell-cell communication via gap junctions as assayed by the intercellular transfer of lucifer yellow dye occurs during condensation and the onset of overt chondrogenesis in high density micromass cultures prepared from the homogeneous population of chondrogenic precursor cells comprising the distal subridge region of stage 25 embryonic chick wing buds. Furthermore, in heterogeneous micromass cultures prepared from the mesodermal cells of whole stage 23/24 limb buds, extensive gap junctional communication is limited to differentiating cartilage cells, while the nonchondrogenic cells of the cultures that are differentiating into the connective tissue lineage exhibit little or no intercellular communication via gap junctions. These results provide a strong incentive for considering and further investigating the possible involvement of cell-cell communication via gap junctions in the regulation of limb cartilage differentiation.  相似文献   

6.
Monoclonal antibodies (MAbs) were used as probes for molecular differences in the surfaces of nonterminally differentiated cells of the developing chick limb. The specificity of the MAbs was determined by immunofluorescent localization performed on cultured breast muscle and limb bud cells and cryosections of a variety of embryonic (stages 15-37) and neonatal tissues. Subpopulations of MAb-positive and -negative cells were isolated by fluorescence-activated cell sorting and their developmental potential was assessed in vitro. Cells of the compacted somite, lateral plate mesoderm, and early limb bud were labeled with the CSAT MAb. Myogenic precursors of the dermatome and limb bud were labeled with the CSAT and L4 MAbs. Chondrogenic precursors of the sclerotome and limb bud were labeled with the CSAT, L4, and C5 MAbs. These precursors were distinguished from fibroblasts which were labeled with the CSAT and C1 MAbs. The differentiation and maturation of muscle and cartilage were accompanied by alterations in the labeling patterns of the MAbs. These results indicate that combinations of these MAbs can be used to distinguish mesenchymal, myogenic, and chondrogenic precursors, identify their site of origin during development, and isolate subpopulations of embryonic cells.  相似文献   

7.
Demineralized bone matrix contains factors which stimulate chondrogenesis and osteogenesis in vivo. A water-soluble extract of bone has been shown to stimulate chondrogenesis in vitro in embryonic limb mesenchymal cells (Syftestad, Lucas & Caplan, 1985). The aim of this study was to analyse the cellular mechanism of the bone-derived chondrogenesis-stimulating activity, with particular attention on how normal requirements for chondrogenesis may be altered. The effects of bovine bone extract (BBE) on chondrogenesis in vitro were studied using micromass cultures of chick limb bud mesenchyme isolated from embryos at Hamburger-Hamilton (HH) stage 23/24, an experimental system which is capable of undergoing chondrogenic differentiation. Bovine diaphyseal long bones were demineralized and extracted with guanidine-HCl to prepare BBE (Syftestad & Caplan, 1984). High-density mesenchyme cultures (30 x 10(6) cells/ml) were exposed to different doses of BBE (0.01-1.0 mg ml-1) and chondrogenesis was quantified based on cartilage nodule number and [35S]sulphate incorporation. BBE was tested on micromass cultures of varying plating densities (2-30 x 10(6) cells/ml), on cultures of 'young' limb bud cells (HH stage 17/18), and on cultures enriched with chondroprogenitor cells obtained from subridge mesoderm. Since poly-L-lysine (PL) has recently been shown (San Antonio & Tuan, 1986) to promote chondrogensis, PL and BBE were introduced together in different doses, in the culture medium, to determine if their actions were synergistic. Our results show that BBE stimulates chondrogenesis in a dose-dependent manner and by a specific, direct action on the chondroprogenitor cells but not in normally non-chondrogenic, low density or 'young' limb bud cell cultures. The effects of PL and BBE are additive and these agents appear to act by separate mechanisms to stimulate chondrogenesis; PL primarily enhances nodule formation, and BBE appears to promote nodule growth.  相似文献   

8.
9.
We have been investigating the hypothesis that prostaglandins including prostaglandin E2 (PGE2) produced during the critical condensation phase of limb chondrogenesis are involved in the regulation of cartilage differentiation by acting as local modulators of cyclic AMP (cAMP) accumulation. The purpose of the present study was to determine directly whether PGE2 and other prostanoids which had previously been shown to stimulate in vitro chondrogenic differentiation do indeed elevate the cAMP content of limb mesenchymal cells, and to determine whether the ability of various prostanoids to increase cAMP production by these cells directly reflects the potencies of these same molecules in stimulating chondrogenesis. We have found that PGE2 does indeed elicit a striking elevation in the cAMP content of subridge mesenchymal cells, indicating that the cells possess adenylate cyclase-coupled receptors for this molecule. The effect of PGE2 on cAMP accumulation is potentiated by a phosphodiesterase inhibitor, thus paralleling the potentiating effect phosphodiesterase inhibitors have on PGE2-stimulated in vitro chondrogenesis. The effect of PGE2 on cAMP content is dose-dependent with a 3-fold increase seen at 10(-8)M, which is the lowest concentration at which PGE2 effectively stimulates chondrogenesis. PGE1, which is just as effective as PGE2 in stimulating chondrogenesis, is just as effective as PGE2 in stimulating cAMP accumulation. PGA1, which is a much less effective stimulator of chondrogenesis than PGE2 or PGE1, is less than half as potent as these molecules in elevating cAMP levels. PGF1 alpha, 6-keto PGF1 alpha, and thromboxane B2, which have little or no effect on chondrogenesis, have little or no effect on cAMP content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
When the subridge mesoderm of the embryonic chick limb bud is cultured in the absence of the apical ectodermal ridge and adjacent ectoderm, the cells rapidly progress through the various stages of chondrogenesis. During the first day of culture, the cells initiate condensation, and during subsequent days, deposit a cartilage matrix. In the present study, we show that early in the first day there is a progressive 2-fold increase in cell surface galactosyltransferase activity towards endogenous acceptors. Later in the first day, although the cells are still in condensation, endogenous galactosyltransferase activity has decreased, suggesting in situ galactosylation of surface acceptors. During subsequent development, when cartilage matrix is being deposited, surface galactosyltransferase activity remains low. All controls have been performed to insure cell surface localization of enzyme activity. Two other surface glycosyltransferases show very low levels of activity, which do not change significantly during culture. We suggest that during cellular condensation, an interaction between surface galactosyltransferases and acceptors on adjacent cells occurs, and this interaction may be causally related to subsequent chondrogenic differentiation.  相似文献   

11.
Adrenomedullin (AM) is a multifunctional peptide that exhibits discrete domains of expression during mouse embryogenesis consistent with a role in regulating growth and differentiation during morphogenesis. Here we report that AM immunoreactivity is present at high levels throughout the apical ectodermal ridge (AER) of the chick limb bud as the AER is directing the outgrowth and patterning of underlying limb mesoderm. Immunostaining is particularly strong along the surfaces of the contiguous cells of the AER. AM immunoreactivity attenuates as the AER regresses and is absent from the distal apical ectoderm of stage 20 limbless mutant limb buds which fail to develop an AER. To explore the possible role of AM in AER activity, we examined the effect of exogenous AM and an AM inhibitor on the in vitro morphogenesis of limb mesoderm, cultured in the presence and absence of the AER. Although exogenous AM cannot substitute for the AER in promoting outgrowth of limb mesoderm in vitro, a specific AM antagonist, AM(22-52), impairs the outgrowth and proliferation of limb mesoderm cultured in the presence of the AER. This is consistent with the possibility that inhibition of endogenous AM activity in the AER impairs the ability of the AER to promote limb morphogenesis. Taken together, these studies suggest that an AM-like molecule may function in an autocrine fashion to regulate some aspect of AER activity.  相似文献   

12.
The glycosaminoglycan hyaluronate (HA) appears to play an important role in limb cartilage differentiation. The large amount of extracellular HA accumulated by prechondrogenic mesenchymal cells may prevent the cell-cell and/or cell-matrix interactions necessary to trigger chondrogenesis, and the removal of extracellular HA may be essential to initiate the crucial cellular condensation process that triggers cartilage differentiation. It has generally been assumed that HA turnover during chondrogenesis is controlled by the activity of the enzyme hyaluronidase (HAase). In the present study we have performed a temporal and spatial analysis of HAase activity during the progression of limb development and cartilage differentiation in vivo. We have separated embryonic chick wing buds at several stages of development into well-defined regions along the proximodistal axis in which cells are in different phases of differentiation, and we have examined HAase activity in each region. We have found that HAase activity is clearly detectable in undifferentiated wing buds at stage 18/19, which is shortly following the formation of a morphologically distinct limb bud rudiment, and remains relatively constant throughout subsequent stages of development through stage 27/28, at which time well-differentiated cartilage rudiments are present. Moreover, HAase activity in the prechondrogenic distal subridge regions of the limb at stages 22/23 and 25 is just as high as, or even slightly higher than, it is in proximal central core regions where condensation and cartilage differentiation are progressing. We have also found that limb bud HAase is active between pH 2.2 and 4.5 and is inactive above pH 5.0. This suggests that limb HAase is a lysosomal enzyme and that extracellular HA would have to be internalized to be degraded. These results indicate that the onset of chondrogenesis is not associated with the appearance or increase in activity of HAase. We suggest that possibility that HA turnover may be regulated by the binding and endocytosis of extracellular HA in preparation for its intracellular degradation by lysosomal HAase. Finally, we have found that the apical ectodermal ridge (AER)-containing distal limb bud ectoderm possesses a relatively high HAase activity. We suggest the possibility that a high HAase activity in the AER may ensure a rapid turnover and remodeling of the disorganized HA-rich basal lamina of the AER that might be essential for limb outgrowth.  相似文献   

13.
Undifferentiated limb bud mesenchyme consists of at least two separate, possibly predetermined, populations of progenitor cells, one derived from somitic mesoderm that gives rise exclusively to skeletal muscle and one derived from somatopleural mesoderm that gives rise to the cartilage and connective tissue of the limb. In the present study, we demonstrate that the inherent migratory capacity of myogenic precursor cells can be used to physically separate the myogenic and chondrogenic progenitor cells of the undifferentiated limb mesenchyme at the earliest stages of limb development. When the undifferentiated mesenchyme of stage 18/19 chick embryo wing buds or from the distal subridge region of stage 22 wing buds is placed intact upon the surface of fibronectin (FN)-coated petri dishes, a large population of cells emigrates out of the explants onto the FN substrates and differentiates into an extensive interlacing network of bipolar spindle-shaped myoblasts and multinucleated myotubes that stain with monoclonal antibody against muscle-specific fast myosin light chain. In contrast, the cells of the explants that remain in place and do not migrate away undergo extensive cartilage differentiation. Significantly, there is no emigration of myogenic cells out of explants of stage 25 distal subridge mesenchyme, which lacks myogenic progenitor cells. Myogenic precursor cells stream out of mesenchyme explants in one or occasionally two discrete locations, suggesting they are spatially segregated in discrete regions of tissue at the time of its explantation. There are subtle overall differences in the morphologies of the myogenic cells that form in stage 18/19 and stage 22 distal subridge mesenchyme explants. Finally, groups of nonmyogenic nonfibroblastic cells which are fusiform-shaped and oriented in distinct parallel arrays characteristically are found along the periphery of stage 18/19 wing mesenchyme explants. Our observations provide support for the concept that undifferentiated limb mesenchyme consists of independent subpopulations of committed precursor cells and provides a system for studying the early determinative and regulatory events involved in myogenesis or chondrogenesis.  相似文献   

14.
15.
Abstract. Demineralized bone matrix contains factors which stimulate chondrogenesis and osteogenesis in vivo. A water-soluble extract of bone has been shown to stimulate chondrogenesis in vitro in embryonic limb mesenchymal cells (Syftestad, Lucas & Caplan, 1985). The aim of this study was to analyse the cellular mechanism of the bone-derived chondrogenesis-stimulating activity, with particular attention on how normal requirements for chondrogenesis may be altered. The effects of bovine bone extract (BBE) on chondrogenesis in vitro were studied using micromass cultures of chick limb bud mesenchyme isolated from embryos at Hamburger-Hamilton (HH) stage 23/24, an experimental system which is capable of undergoing chondrogenic differentiation. Bovine diaphyseal long bones were demineralized and extracted with guanidine-HCl to prepare BBE (Syftestad & Caplan, 1984). High-density mesenchyme cultures (30 times 106 cells/ml) were exposed to different doses of BBE (0–01-1-0 mg ml-1) and chondrogenesis was quantified based on cartilage nodule number and [35S]sulphate incorporation. BBE was tested on micromass cultures of varying plating densities (2–30 times 106 cells/ml), on cultures of ‘young’ limb bud cells (HH stage 17/18), and on cultures enriched with chondroprogenitor cells obtained from subridge mesoderm. Since poly-L-lysine (PL) has recently been shown (San Antonio & Tuan, 1986) to promote chondrogensis, PL and BBE were introduced together in different doses, in the culture medium, to determine if their actions were synergistic. Our results show that BBE stimulates chondrogenesis in a dose-dependent manner and by a specific, direct action on the chondroprogenitor cells but not in normally non-chondrogenic, low density or ‘young’ limb bud cell cultures. The effects of PL and BBE are additive and these agents appear to act by separate mechanisms to stimulate chondrogenesis; PL primarily enhances nodule formation, and BBE appears to promote nodule growth.  相似文献   

16.
17.
18.
Abstract. The limb buds of the polydactylous mutant embryos, talpid 2 and diplopodia -5, possess expanded distal apexes surmounted by prolongated thickened apical ectodermal ridges that promote the outgrowth and formation of digits from both the anterior and posterior mesoderm of the mutant limb buds. The chicken homeobox-containing gene GHox-7 exhibits an expanded domain of expression throughout the expanded subridge mesoderm of the mutant limb buds, providing support for the hypothesis that GHox-7 expression by subridge mesenchymal cells is involved in the outgrowth-promoting effect of the apical ectodermal ridge. During normal limb development GHox-7 is also expressed by the mesoderm in the proximal anterior nonchondrogenic periphery of the limb bud, which includes, but is not limited to the anterior necrotic zone. GHox-7 is also expressed in the posterior necrotic zone at the mid-proximal posterior edge of the limb bud. In contrast, GHox-7 is not expressed in either the proximal anterior or posterior peripheral mesoderm of talpid 2 and diplopodia -5 limb buds which lack proximal anterior and posterior necrotic zones. Furthermore, retinoic acid-coated bead implants, which diminish cell death in the anterior necrotic zone, elicit a local inhibition of GHox-7 expression in the proximal anterior peripheral mesoderm. These results support the suggestion that GHox-7 may be involved in defining regions of programmed cell death during limb development. Furthermore, these studies indicate that the distal subridge and proximal anterior nonchondrogenic mesodermal domains of GHox-7 expression are independently regulated.  相似文献   

19.
This study represents a first step in investigating the possible involvement of transforming growth factor-beta (TGF-beta) in the regulation of embryonic chick limb cartilage differentiation. TGF-beta 1 and 2 (1-10 ng/ml) elicit a striking increase in the accumulation of Alcian blue, pH 1-positive cartilage matrix, and a corresponding twofold to threefold increase in the accumulation of 35S-sulfate- or 3H-glucosamine-labeled sulfated glycosaminoglycans (GAG) by high density micromass cultures prepared from the cells of whole stage 23/24 limb buds or the homogeneous population of chondrogenic precursor cells comprising the distal subridge mesenchyme of stage 25 wing buds. Moreover, TGF-beta causes a striking (threefold to sixfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific proteoglycan. Only a brief (2 hr) exposure to TGF-beta at the initiation of culture is sufficient to stimulate chondrogenesis, indicating that the growth factor is acting at an early step in the process. Furthermore, TGF-beta promotes the formation of cartilage matrix and cartilage-specific gene expression in low density subconfluent spot cultures of limb mesenchymal cells, which are situations in which little, or no chondrogenic differentiation normally occurs. These results provide strong incentive for considering and further investigating the role of TGF-beta in the control of limb cartilage differentiation.  相似文献   

20.
Mesenchyme cell populations prepared from proximal and distal halves of stage 20 mouse forelimb buds are shown to behave under in vitro micromass culture conditions like analogous cell populations obtained from chick embryo limb buds. While the distal cells are spontaneously chondrogenic, the proximal cells make aggregates which are only potentially chondrogenic after treatment with dibutyryl cyclic AMP. In addition, stage 20 mouse whole limb bud cells homozygous for the brachypodismH (bpH) mutation are shown to behave similarly to 'normal' proximal cells. Both make fewer aggregates and nodules and both have faster aggregation rates (determined as the rate of disappearance of single cells over time) in rotation cultures than 'normal' distal or whole limb bud cells. These results support the hypothesis that the bpH mutation specifically decreases the proportion of spontaneously chondrogenic mesenchyme cells (that is, distal-like cells) present at certain developmental stages in the limb bud, resulting in a prematurely high proportion of proximal-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号