首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C1-BODIPY-C12 in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis–Menten kinetics; the apparent efficiency (kcat/KT) of this process increases over 2-fold (2.1 × 106–4.5 × 106 s−1 M−1) upon adipocyte differentiation. The Vmax values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 × 106 s−1 M−1 versus 1.5 × 106 s−1 M−1). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving Vmax values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The same cells had reduced efficiency for fatty acid transport (ranging from 0.82 × 106 s−1 M−1 to 1.35 × 106 s−1 M−1).  相似文献   

2.
The activity and mRNA level of hepatic enzymes in fatty acid oxidation and synthesis were compared in rats fed diets containing either 15% saturated fat (palm oil), safflower oil rich in linoleic acid, perilla oil rich in α-linolenic acid or fish oil rich in eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) for 15 days. The mitochondrial fatty acid oxidation rate was 50% higher in rats fed perilla and fish oils than in the other groups. Perilla and fish oils compared to palm and safflower oils approximately doubled and more than tripled, respectively, peroxisomal fatty acid oxidation rate. Compared to palm and safflower oil, both perilla and fish oils caused a 50% increase in carnitine palmitoyltransferase I activity. Dietary fats rich in n-3 fatty acids also increased the activity of other fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. The extent of the increase was greater with fish oil than with perilla oil. Interestingly, both perilla and fish oils decreased the activity of 3-hydroxyacyl-CoA dehydrogenase measured using short- and medium-chain substrates. Compared to palm and safflower oils, perilla and fish oils increased the mRNA level of many mitochondrial and peroxisomal enzymes. Increases were generally greater with fish oil than with perilla oil. Fatty acid synthase, glucose-6-phosphate dehydrogenase, and pyruvate kinase activity and mRNA level were higher in rats fed palm oil than in the other groups. Among rats fed polyunsaturated fats, activities and mRNA levels of these enzymes were lower in rats fed fish oil than in the animals fed perilla and safflower oils. The values were comparable between the latter two groups. Safflower and fish oils but not perilla oil, compared to palm oil, also decreased malic enzyme activity and mRNA level. Examination of the fatty acid composition of hepatic phospholipid indicated that dietary α-linolenic acid is effectively desaturated and elongated to form EPA and DHA. Dietary perilla oil and fish oil therefore exert similar physiological activity in modulating hepatic fatty acid oxidation, but these dietary fats considerably differ in affecting fatty acid synthesis.  相似文献   

3.
The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha. Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells. FATP1 kd adipocytes displayed an approximately 25% reduction in basal (3)H-labeled fatty acid uptake and a complete loss of insulin-stimulated (3)H-labeled fatty acid uptake compared with control adipocytes. In contrast, FATP4 kd adipocytes as well as HEK-293 cells overexpressing FATP4 did not display any changes in fatty acid influx. FATP4 kd cells exhibited increased basal lipolysis, whereas FATP1 kd cells exhibited no change in lipolytic capacity. Consistent with reduced triacylglycerol accumulation, FATP1 and FATP4 kd adipocytes exhibited enhanced 2-deoxyglucose uptake compared with control adipocytes. These findings define unique and distinct roles for FATP1 and FATP4 in adipose fatty acid metabolism.  相似文献   

4.

Background

Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation–reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain long-chain acyl-CoA synthetase (Acsl)4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl4 catalyzed acylation, and thus have a potential anti-BD action.

Methods

Rat Acsl4-flag protein was expressed in Escherichia coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis–Menten kinetics.

Results

Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4 mM compared to a published Ki of 25 mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect.

Conclusions

PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients.  相似文献   

5.
Three C terminal His6-tagged recombinant microbial CMP–sialic acid synthetases [EC 2.7.7.43] cloned from Neisseria meningitidis group B, Streptococcus agalactiae serotype V, and Escherichia coli K1, respectively, were evaluated for their ability in the synthesis of CMP–sialic acid derivatives in a one-pot two-enzyme system. In this system, N-acetylmannosamine or mannose analogs were condensed with pyruvate, catalyzed by a recombinant sialic acid aldolase [EC 4.1.3.3] cloned from E. coli K12 to provide sialic acid analogs as substrates for the CMP–sialic acid synthetases. The substrate flexibility and the reaction efficiency of the three recombinant CMP–sialic acid synthetases were compared, first by qualitative screening using thin layer chromatography, and then by quantitative analysis using high performance liquid chromatography. The N. meningitidis synthetase was shown to have the highest expression level, the most flexible substrate specificity, and the highest catalytic efficiency among the three synthetases. Finally, eight sugar nucleotides, including cytidine 5′-monophosphate N-acetylneuraminic acid (CMP–Neu5Ac) and its derivatives with substitutions at carbon-5, carbon-8, or carbon-9 of Neu5Ac, were synthesized in a preparative (100–200 mg) scale from their 5- or 6-carbon sugar precursors using the N. meningitidis synthetase and the aldolase.  相似文献   

6.
The effect of insulin on the activity of pyruvate dehydrogenase is studied in isolated hepatocytes from fed rats. Insulin increases the ‘initial’ activity of pyruvate dehydrogenase by 30% without modifying the total activity of the enzyme. The maximal increase is reached 3 min after addition of the hormone and is dose-dependent. Insulin also increases the rate of fatty acid synthesis.  相似文献   

7.
Rat hearts perfused for up to 60 min in the working mode with palmitate, but not with glucose, resulted in substantial formation of palmitoylcarnitine and stearoylcarnitine. To test whether lipolysis of endogenous lipids was responsible for the increased stearoylcarnitine content or whether some of the perfused palmitate underwent chain elongation, hearts were perfused with hexadecanoic-16,16,16-d(3) acid (M+3). The pentafluorophenacyl ester of deuterium labeled stearoylcarnitine had an M+3 (639.4 m/z) compared to the unlabeled M+0 (636.3 m/z) consistent with a direct chain elongation of the perfused palmitate. Furthermore, the near equal isotope enrichment of palmitoyl- (90.2+/-5.8%) and stearoylcarnitine (78.0+/-7.1%) suggest that both palmitoyl- and stearoyl-CoA have ready access to mitochondrial carnitine palmitoyltransferase and that most of the stearoylcarnitine is derived from the perfused palmitate.  相似文献   

8.
Summary Sulfo-N-succinimidyl derivatives of the long-chain fatty acids, oleic and myristic, were synthesized and covalently reacted with isolated rat adipocytes. The plasma membrane proteins labeled by these compounds and the effect of labeling on the transport of long-chain fatty acids were investigated. Sulfo-N-succinimidyl oleate (SSO) and myristate (SSM) inhibited the transport of fatty acids (by about 70%). Inhibition of fatty acid transport was not a result of alterations in cell integrity, as intracellular water volume was not changed. It did not reflect effects on fatty acid metabolism, since it was observed under conditions where greater than 90% of the fatty acid taken up was recovered in the free form. The inhibitory effect was specific to the fatty acid transport system, as the transport of glucose and the permeation of retinoic acid, a substance with structural similarities to long-chain fatty acids, were unaffected. Sulfosuccinimidyl oleate reacted exclusively with a plasma membrane protein with an apparent size of 85 kDa while sulfosuccinimidyl myristate also labeled a 75-kDa while sulfosuccinimidyl myristate also labeled a 75-kDa protein. These proteins were among the ones labeled by diisothiocyanodisulfonic acid (DIDS) which also inhibits fatty acid transport irreversibly. The data suggest that the 85-kDa protein, which is the only one labeled by all three inhibitors is involved in facilitating membrane permeation of long-chain fatty acids.  相似文献   

9.
At the subcellular level, the synthesis of ceramide from free lignoceric acid and sphingosine in brain required reconstituted enzyme system (particulate fraction, heat-stable and heat-labile factors) and pyridine nucleotide (NADPH). The mitochondrial electron transfer inhibitors (KCN and antimycin A), energy uncouplers (oligomycin and 2,4-dinitrophenol), and carboxyatractyloside, which prevents the transport of ATP and ADP through the mitochondrial wall, inhibit the synthesis of ceramide in the presence of NADPH but have very little effect in the presence of ATP. Similar to the synthesis of ceramide, the synthesis of ATP from NADPH and NADH by the particulate fraction also required cytoplasmic factors (heat-stable and heat-labile factors). Moreover, ATP, but not its analog (AMP-CH2-P-O-P), can replace NADPH, thus suggesting that the function of the pyridine nucleotide is to provide ATP for the synthesis of ceramide. The cytoplasmic factors were not required for the synthesis of ceramide in the presence of ATP. The maximum velocity for synthesis of ceramide from free fatty acids of different chain lengths (C16-C26) was bimodal, with maxima around stearic acid (C18) and behenic acid (C22). The relative rate of synthesis of ceramide parallels the relative distribution of these fatty acids in brain cerebrosides and sulfatides.  相似文献   

10.
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.  相似文献   

11.
Relatively little is known about the hormonal regulation of amino acid transport in the normal and diabetic exocrine pancreas. In this study unidirectional influx and tracer efflux of l-serine at the basolateral interface of the rat pancreatic epithelium was investigated in the perfused exocrine pancreas using a rapid (< 30 s) paired-tracer dilution technique. In the non-diabetic pancreas l-serine influx was saturable and stimulated by perfusion with exogenous bovine insulin (100 μU/ml). Transport of l-serine and methylaminoisobutyric acid was markedly elevated in pancreata isolated from streptozotocin diabetic rats and insulin partially reversed the stimulation of l-serine transport induced by experimental diabetes. These results suggest that insulin and diabetes modulate the epithelial transport activity for small neutral amino acids in the intact exocrine pancreas.  相似文献   

12.
Isolated hepatocytes from fasted rats were used to study the effects of lactate on palmitate metabolism. Lactate was found to stimulate fatty acid esterification and citric acid cycle oxidation and to inhibit ketone body synthesis. These effects of lactate were largely maintained when gluconeogenesis was inhibited with either quinolinate or perfluorosuccinate, but were overcome by α-cyano-4-hydroxycinnamate. However, the responses of hepatocytes to lactate could be restored in the presence of α-cyano-4-hydroxycinnamate by the further addition of propionate. The stimulation of triacylglycerol synthesis by lactate was not associated with an increase in the concentration of glycerol 3-phosphate. Rather, there was a correlation between flux through the citric acid cycle and the rate of triacylglycerol synthesis. In all instances reduction of ketone body formation in the presence of lactate was accompanied by a stimulation of citric acid cycle oxidation.  相似文献   

13.
Phenylacetic acid (PAA), a naturally-occurring acidic plant growth substance, was readily taken up by pea (Pisum sativum L. cv. Alderman) stem segments from buffered external solutions by a pH-dependent, non-mediated diffusion. Net uptake from a 0.2 M solution at pH 4.5 proceeded at a constant rate for at least 60 min and, up to approx. 100 M, the rate of uptake was directly proportional to the external concentration of the compound. The net rate of uptake of PAA was not affected by the inclusion of indol-3yl-acetic acid (IAA) in the uptake medium (up to approx. 30 M) and, unlike the net uptake of IAA, was not stimulated by N-1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid. At an external concentration of 0.2 M and pH 4.5, the net rate of uptake of PAA was about twice that of IAA. It was concluded that the uptake of PAA did not involve the participation of carriers and that PAA was not a transported substrate for the carriers involved in the uptake and polar transport of IAA. Nevertheless, the inclusion of 3–100 M unlabelled PAA in the external medium greatly stimulated the uptake by pea stem segments of [1-14C]IAA (external concentration 0.2 M). It was concluded that whilst PAA was not a transported substrate for the NPA-sensitive IAA efflux carrier, it interacted with this carrier to inhibit IAA efflux from cells. Over the concentration range 3–100 M, PAA progressively reduced the stimulatory effect of NPA on IAA uptake, indicating that PAA also inhibited carrier-mediated uptake of IAA. The consequences of these observations for the regulation of polar auxin transport are discussed.Abbreviations IAA indol-3yl-acetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

14.
Insulin stimulates a 2-fold increase in the amount of tyrosine aminotransferase and a 5–10-fold increase in the rate of amino acid transport in dexamethasone-treated rat hepatoma cells. In order to determine whether these effects are mediated by insulin receptors or receptors for insulin-like growth factors, we have examined the binding of 125I-labeled insulin and 125I-labeled multiplication-stimulating activity, a prototype insulin-like growth factor, and compared the biological effects of these polypeptides. Insulin and multiplication-stimulating activity cause an identical increase in transaminase activity and transport velocity; half-maximal biological effects were observed at 35 ng/ml (5.5 nM) insulin and 140 ng/ml multiplication-stimulating activity. The hepatoma cells display typical insulin receptors of appropriate specificity; half-maximal displacement of tracer insulin binding occured at 33 ng/ml unlabeled insulin, but only at 2500 ng/ml unlabeled multiplication-stimulating activity. Specific multiplication-stimulating activity receptors also were demonstrated with which insulin did not interact even at 10 μg/ml. Half-maximal displacement of tracer multiplication-stimulating activity occured at 200 ng/ml unlabeled multiplication-stimulating activity. We conclude that insulin cannot act via the multiplication-stimulating activity receptor and presumably acts via typical insulin receptors. The effects of multiplication-stimulating activity on enzyme induction and amino acid transport are probably mediated primarily via the multiplication-stimulating activity receptor.  相似文献   

15.
(1) N-Ethylmaleimide (a penetrating SH- reagent) inactivated l-[14C]leucine entrance (binding and translocation) into Saccharomyces cerevisiae, the extent of inhibition depending on the time of preincubation with N-ethylmaleimide, N-ethylmaleimide concentration, the amino acid external and internal concentration, and the energization state of the yeast cells. With d-glucose-energized yeast, N-ethylmaleimide inhibited l-[14C]leucine entrance in all the assayed experimental conditions, but with starved yeast and low (0.1 mM) amino acid concentration, it did not inhibit l-[14C]leucine binding, except when the cells were preincubated with l-leucine. With the rho? respiratory-deficient mutant (energized cells), N-ethylmaleimide inhibited l[14C]leucine entrance as with the energized wild-type, though to a lesser extent. (2) Analysis of the N-ethylmaleimide effect as a function of l-[14C]leucine concentration showed a significant decrease of Jmax values of the high- (S1) and low- (S2) affinity amino acid transport systems, but KT values were not significantly modified. (3) When assayed in the presence of d-glucose, N-ethylmaleimide inhibition of d-glucose uptake and respiration contributed significantly to inactivation of l-[14C]leucine entrance. Pretreatment of yeast cells with 2,4-dinitrophenol enhanced the effect of l-[14C]leucine binding and translocation. (4) Bromoacetylsulfanilic acid and bromoacetylaminoisophthalic acid, two non-penetrating SH- reagents, did not inactivate l-[14C]leucine entrance, while p-chloromercuribenzoate, a slowly penetrating SH- reagent, inactivated it to a limited extent. When compared with the effect of N-ethylmaleimide, these negative results indicate that thiol groups of the l-[14C]leucine carrier were not exposed on the outer surface of the yeast cell permeability barrier.  相似文献   

16.
The transport of [14C]phenylacetic acid (PAA) in intact plants and stem segments of light-grown pea (Pisum sativum L. cv. Alderman) plants was investigated and compared with the transport of [14C]indiol-3yl-acetic acid (IAA). Although PAA was readily taken up by apical tissues, unlike IAA it did not undergo long-distance transport in the stem. The absence of PAA export from the apex was shown not to be the consequence of its failure to be taken up or of its metabolism. Only a weak diffusive movement of PAA was observed in isolated stem segments which readily transported IAA. When [1-14C]PAA was applied to a mature foliage leaf in light, only 5.4% of the 14C recovered in ethanol extracts (89.6% of applied 14C) had been exported from the leaf after 6.0 h. When applied to the corresponding leaf, [14C]sucrose was readily exported (46.4% of the total recovered ethanol-soluble 14C after 6.0 h). [1-14C]phenylacetic acid applied to the root system was readily taken up but, after 5.0 h, 99.3% of the recovered 14C was still in the root system.When applied to the stem of intact plants (either in lanolin at 10 mg·g-1, or as a 10-4 M solution), unlabelled PAA blocked the transport through the stem of [1-14C]IAA applied to the apical bud, and caused IAA to accumulate in the PAA-treated region of the stem. Applications of PAA to the stem also inhibited the basipetal polar transport of [1-14C]IAA in isolated stem segments. These results are consistent with recent observations (C.F. Johnson and D.A. Morris, 1987, Planta 172, 400–407) that no carriers for PAA occur in the plasma membrane of the light-grown pea stem, but that PAA can inhibit the carrier-mediated efflux of IAA from cells. The possible functions of endogenous PAA are discussed and its is suggested that an important role of the compound may be to modulate the polar transport and-or accumulation by cells of IAA.Abbreviations IAA indol-3yl-acetic acid - NPA N-1-naphthylphthalamic acid - PAA phenylacetic acid - IIBA 2,3,5-triiodobenzoic acid  相似文献   

17.
Purified enterotoxin from the bacterium Clostridium perfringens rapidly decreased the hormonally induced uptake of α-aminoisobutyric acid in primary cultures of adult rat hepatocytes. At 5 min after toxin addition the decrease in α-aminoisobutyric acid uptake appeared not due to increased passive permeation (estimated with l-glucose) or to increased α-aminoisobutyric acid efflux. When short uptake assay times were employed a depression of α-aminoisobutyric acid influx was observed in toxin-treated hepatocytes. The depression of α-aminoisobutyric acid influx was correlated with a rapid increase in intracellular Na+ (estimated using 22Na+) apparently effected by membrane damage. In contrast, the uptake of cycloleucine in the presence of unlabeled α-aminoisobutyric acid (assay for Na+-independent amino acid uptake) by hepatocytes treated with toxin for 5 min was decreased to only a small extent or not at all depending upon experimental design. At later times, C. perfringens enterotoxin increased the exodus of l-glucose, 3-O-methylglucose and α-aminoisobutyric acid from pre-loaded cells indicating that the toxin effects progressive membrane damage. When enterotoxin was removed by repeated washing after 5–20 min the decay of α-aminoisobutyric acid uptake ceased and appeared to undergo recovery towards the hormonally induced control level. The degree of recovery of α-aminoisobutyric acid uptake was inverse to the length of time of exposure to toxin. Adding at 10 min specific rabbit antiserum against C. perfringens enterotoxin without medium change also reversed the effect of toxin on increased intracellular 22Na+, and on the exodus (from preloaded cells) of α-aminoisobutyric acid, L-glucose, and 3-O-methylglucose.  相似文献   

18.
The relationship between nitrate which is formed from inhaled nitrogen dioxide, a common air pollutant, and changes in fatty acid metabolism of phosphatidylserine in rat erythrocytes has been examined. When erythrocytes were incubated at 37°C for 60 min with fatty acid, the incorporation rate of [1-14C]arachidonic acid and [9,10-3H]palmitic acid into phosphatidylserine was 15% (80 pmol/h per μmol lipid phosphorus) and 20% (12 pmol/h per μmol lipid phosphorus) of those into phosphatidylethanolamine, respectively. By the addition of 1.0 mM sodium nitrate or 0.5 μM ionophore A23187 to the incubation mixture, the rate of incorporation of both arachidonic acid and palmitic acid into phosphatidylethanolamine was stimulated 1.45-fold. On the other hand, the incorporation of palmitic acid into phosphatidylserine was little affected, while that of arachidonic acid was stimulated 1.35-fold. An increase in arachidonic acid of phosphatidylserine was also found by the addition of nitrate or ionophore A23187. This increase was dependent on the concentration of extracellular calcium and observed by the addition of other chaotropic anions in the order SCN >CIO4? > NO3?. It seems likely, therefore, that nitrate causes changes in erythrocyte membranes to facilitate calcium uptake. Increasing the concentration of intracellular calcium may cause stimulation of acyl-CoA:lysophospholipid acyltransferase and/or endogenous phospholipase A2.  相似文献   

19.
Molecular and Cellular Biochemistry - In this study, ischemia and oxidative stress-inducible gene expression in heart was examined by subtractive hybridization technique. Total RNA was isolated...  相似文献   

20.
Summary. Glucocorticoid hormones enhance the reabsorptive capacity of filtered amino acids in rat kidney, as it was shown in previous in vivo clearance experiments. In the present study, the site of glucocorticoid action on neutral amino acid transport in superficial nephrons of rat kidney was investigated using in vivo micropuncture technique. Adult female Wistar rats were treated with dexamethasone (DEX), and fractional excretion of L-glutamine (L-Gln) and L-leucine (L-Leu) were determined and related to inulin after microinfusion into different nephron segments. DEX reduced fractional excretion of both neutral amino acids as a sign of enhanced reabsorptive capacity. The site of main DEX action on L-Leu reabsorption has been localized in the proximal straight tubule. However, in the case of L-Gln, the inhibition of γ-glutamyltranspeptidase (γ-GT) by administration of acivicin indicated the importance of this brush border enzyme in reduced L-Gln excretion. DEX enhanced γ-GT activity by tubular acidification. It can be presumed a DEX-inducible transport system for neutral amino acids mainly localized in proximal straight tubules of rat kidney. Received July 8, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号