共查询到20条相似文献,搜索用时 15 毫秒
1.
Gabriela Quiroga Gorka Erice Lei Ding Franois Chaumont Ricardo Aroca Juan Manuel Ruiz‐Lozano 《Plant, cell & environment》2019,42(7):2274-2290
Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell‐to‐cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf) and cell hydraulic conductivity (Lpc) were measured in root protoplast and intact cortex cells of AM and non‐AM plants subjected or not to water stress. Results showed that cells from droughted‐AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non‐AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s?1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity. 相似文献
2.
Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses 总被引:1,自引:0,他引:1 下载免费PDF全文
It has long been recognized that inhibition of plant water transport by either osmotic stress or salinity is mediated by aquaporins (AQPs), but the function and regulation of AQPs are highly variable among distinct isoforms and across different species. In this study, cucumber seedlings were subjected to polyethylene glycol (PEG) or NaCl stress for duration of 2 h or 24 h. The 2 h treatment with PEG or NaCl had non‐significant effect on the expression of plasma membrane AQP (CsPIPs) in roots, indicating the decrease in hydraulic conductivity of roots (Lpr) and root cells (Lprc) measured in these conditions were due to changes in AQP activity. After both 2 h and 24 h PEG or NaCl exposure, the decrease in hydraulic conductivity of leaves (Kleaf) and leaf cells (Lplc) could be attributed to a down‐regulation of the two most highly expressed isoforms, CsPIP1;2 and CsPIP2;4. In roots, both Lpr and Lprc were further reduced after 24 h PEG exposure, but partially recovered after 24 h NaCl treatment, which were consistent with changes in the expression of CsPIP genes. Overall, the results demonstrated differential responses of CsPIPs in mediating water transport of cucumber seedlings, and the regulatory mechanisms differed according to applied stresses, stress durations and specific organs. 相似文献
3.
Ya. N. Ampilogova I. M. Zhestkova M. S. Trofimova 《Russian Journal of Plant Physiology》2006,53(5):622-628
Partitioning in a biphasic polymer system was used to isolate plasmalemma (PM) from roots and shoots of etiolated pea seedlings. The membrane preparations were used to assess the osmotic water permeability (P os) with the stopped-flow method. The Western-blot technique was employed to determine the membrane content of the PIP-family of aquaporins, and their activity was estimated by measuring the rate of osmotic vesicle shrinking in the presence of inhibitors, HgCl2 and AgNO3. Monobromobimane fluorescent dye was used to determine the quantity of sulfhydryl groups in cell membranes and follow the effect of SH-oxidizing (diamide) and SH-reducing (dithiothreitol and tributylphosphine) agents on P os of the root PM and oligomerization of aquaporins. The shoot PM was shown to combine high P os with low aquaporin content. In the root PM, P os was lower and the aquaporin content greatly exceeded that in the shoots. HgCl2 and AgNO3 did not decrease the rate of osmotic shrinking in root membrane vesicles, whereas considerably (by 40–50%) inhibited this index in the shoot membranes. Root and shoot PM preparations dramatically differed in their SH-group contents: the former exceeded the latter sixfold. When added to the homogenization medium, diamide and tributylphosphine affected the content of SH-groups and P os in the root PM. In the roots, diamide decreased the quantity of SH-groups almost twofold and increased P os fourfold, and the introduction of tributylphosphine produced a twofold increase in the quantity of SH-groups with only slight decrease in the P os. Immunological analysis of membranes isolated in the presence of diamide showed that the ratio between the monomer and dimer forms of aquaporins in two membrane preparations depended on the presence of dithiothreitol in the denaturing buffer apparently because dithiothreitol exposed and reduced disulfide bonds essential for monomer interactions and inaccessible for interaction with redox modifiers of SH-groups in the membrane. Because of their inaccessibility, these modifiers could not cause the changes of P os in the root PM produced by oxidation and reduction of SH-groups. This phenomenon is probably related to the change in the status of SH-groups in two cysteine residues at the N-end of the aquaporin loop C oriented outward into the apoplast. 相似文献
4.
Summary Permeabilities for a homologous series of amine and carboxylate nitroxide spin probes were measured in human red blood cells by an electron paramagnetic resonance (EPR) method. Permeabilities determined in this study are much lower than would be predicted for a sheet of bulk hydrocarbon and the polarity of the rate-limiting region is shown to be greater than bulk hydrocarbon. This suggests that the rate-limiting region for permeation of these nonelectrolytes is somewhere in the membrane periphery rather than in the center of the membrane. The red cell membrane does not discriminate between these probes on the basis of molecular volume, as might be predicted by a simple free-volume theory of membrane permeation. 相似文献
5.
The determination of membrane transport parameters with the cell pressure probe: theory suggests that unstirred layers have significant impact 总被引:3,自引:0,他引:3
A simulation model was written to compute the time-kinetics of turgor pressure, P, change in Chara corallina during cell pressure probe experiments. The model allowed for the contribution of a membrane plus zero, one, or two unstirred layers of any desired thickness. The hypothesis that a cell with an unstirred layer is a composite membrane that will follow the same kind of kinetics with or without unstirred layers was tested. Typical ‘osmotic pulse’ experiments yield biphasic curves with minimum or maximum pressures, Pmin(max), at time tmin(max) and a solute exponential decay with halftime . These observed data were then used to compute composite membrane properties, namely the parameters Lp = the hydraulic conductance, σ = reflection coefficient and Ps = solute permeability using theoretical equations. Using the simulation model, it was possible to fit an experimental data set to the same values of Pmin(max), tmin(max) and incorporating different, likely values of unstirred layer thickness, where each thickness requires a unique set of plasmalemma membrane values of Lp, σ and Ps. We conclude that it is not possible to compute plasmalemma membrane properties from cell pressure probe experiments without independent knowledge of the unstirred layer thickness. 相似文献
6.
Yoshichika Kitagawa Chengwei Liu Xiaodong Ding 《Biochemical and biophysical research communications》2011,409(1):40
Aquaporins are the intrinsic membrane proteins functioning as water channel to transport water and/or mineral nutrients across the biological membrane systems. In this research, we aimed to clarify if the selected mineral water can affect aquaporin functions in vitro and the assumption of the mineral water can modify aquaporin expression and activate natural killer cell activity in human body. First, we expressed six human and eight plant aquaporin genes in oocytes and compared the effect of different kinds of natural mineral water on aquaporin activity. The oocyte assay data show that Hita tenryosui water could promote water permeability of almost all human and plant aquaporins in varying degrees, and freeze-dry and organic solvent extraction could reduce AQP2 activity but pH change and boiling could not. Second, each volunteer in two groups (10 in one group) received an oral Hita tenryosui or tap water load of 1000 ml/day for total four weeks. We found that these two kinds of water did not directly affect the relative expression levels of AQP1 and AQP9 in the blood cells, but intriguingly, the natural killer cell activities of the volunteers drinking Hita tenryosui water were significantly improved, suggesting that Hita tenryosui water has obvious health function, which opens a new and interesting field of investigation related to the link between mineral water consumption and human health and the therapies for some chronic diseases. 相似文献
7.
The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH 总被引:17,自引:0,他引:17
Gerbeau P Amodeo G Henzler T Santoni V Ripoche P Maurel C 《The Plant journal : for cell and molecular biology》2002,30(1):71-81
Mechanisms that regulate water channels in the plant plasma membrane (PM) were investigated in Arabidopsis suspension cells. Cell hydraulic conductivity was measured with a cell pressure probe and was reduced 4-fold as compared to control values when calcium was added in the pipette and in bathing solution. To assess the significance of these effects in vitro, PM vesicles were isolated by aqueous two-phase partitioning and their water transport properties were characterized by stopped-flow spectrophotometry. Membrane vesicles isolated in standard conditions exhibited reduced water permeability (P(f)) together with a lack of active water channels. In contrast, when prepared in the presence of chelators of divalent cations, PM vesicles showed a 2.3-fold higher P(f) and active water channels. Furthermore, equilibration of purified PM vesicles with divalent cations reduced their P(f ) and water channel activity down to the basal level of membranes isolated in standard conditions. Ca2+ was the most efficient with a half-inhibition of P(f) at 50-100 microM free Ca2+. Water transport in purified PM vesicles was also reversibly blocked by H+, with a half-inhibition of P(f )at pH 7.2-7.5. Thus, both Ca2+ and H+ contribute to a membrane-delimited switch from active to inactive water channels that may allow coupling of water transport to cell signalling and metabolism. 相似文献
8.
Sondra Warren Levin Ronald L. Levin A.K. Solomon 《Journal of biochemical and biophysical methods》1980,3(5):255-272
An improved stop-flow apparatus has been designed and constructed to measure the permeability characteristics of human red cells, which can be inferred from the time course of red cell volume changes following a sudden change in cellular environment produced by a rapid mixing device. The improved apparatus is directly coupled to a computer which automates thesubtraction and averaging procedures that have been developed to minimize the noise generated in the system by the cessation of red cell forward motion when the flow is suddenly stopped. Real time data acquisition also makes it possible to increase the number of data points by an order of magnitude, thus improving accuracy significantly. The apparatus has been tested by measurements of the human red cel hydraulic permeability coefficient. Data are presented to validate the subtraction procedure. Experiments have also been carried out on red cell ghosts which indicate that the hydraulic conductivity of the ghost is similar to that of the undisturbed red cell. 相似文献
9.
Intra- and transcellular water movements in plants are regulated by the water permeability of the plasma membrane (PM) and
vacuolar membrane (VM) in plant cells. In the present study, we investigated the osmotic water permeability of both PM (P
f1) and VM (P
f2), as well as the bulk osmotic water permeability of a protoplast (P
f(bulk)) isolated from radish (Raphanus sativus) roots. The values of P
f(bulk) and P
f2 were determined from the swelling/shrinking rate of protoplasts and isolated vacuoles under hypo- or hypertonic conditions.
In order to minimize the effect of unstirred layer, we monitored dropping or rising protoplasts (vacuoles) in sorbitol solutions
as they swelled or shrunk. P
f1 was calculated from P
f(bulk) and P
f2 by using the ‘three-compartment model’, which describes the theoretical relationship between P
f1, P
f2 and P
f(bulk) (Kuwagata and Murai-Hatano in J Plant Res, 2007). The time-dependent changes in the volume of protoplasts and isolated vacuoles fitted well to the theoretical curves, and
solute permeation of PM and VM was able to be neglected for measuring the osmotic water permeability. High osmotic water permeability
of more than 500 μm s−1, indicating high activity of aquaporins (water channels), was observed in both PM and VM in radish root cells. This method
has the advantage that P
f1 and P
f2 can be measured accurately in individual higher plant cells.
Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. It includes four appendices, four tables and two figures.
Mari Murai-Hatano and Tsuneo Kuwagata contributed equally to the paper.
An erratum to this article is available at . 相似文献
10.
Membrane permeability of fructose-1,6-diphosphate in lipid vesicles and endothelial cells 总被引:3,自引:0,他引:3
Ehringer WD Niu W Chiang B Wang OL Gordon L Chien S 《Molecular and cellular biochemistry》2000,210(1-2):35-45
Fructose-1,6-diphosphate (FDP) is a glycolytic intermediate which has been used an intervention in various ischemic conditions for two decades. Yet whether FDP can enter the cell is under constant debate. In this study we examined membrane permeability of FDP in artificial membrane bilayers and in endothelial cells. To examine passive diffusion of FDP through the membrane bilayer, L-a-phosphatidylcholine from egg yolk (Egg PC) (10 mM) multi-lamellar vesicles were created containing different external concentrations of FDP (0, 0.5, 5 and 50 mM). The passive diffusion of FDP into the vesicles was followed spectrophotometrically. The results indicate that FDP diffuses through the membrane bilayer in a dose-dependent fashion. The movement of FDP through Egg PC membrane bilayers was confirmed by measuring the conversion of FDP to dihydroxyacetone-phosphate and the formation of hydrozone. FDP (0, 0.5, 5 or 50 mM) was encapsulated in Egg PC multilamellar vesicles and placed in a solution containing aldolase. In the 5 and 50 mM FDP groups there was a significant increase in dihydroxyacetone/hydrazone indicating that FDP crossed the membrane bilayer intact. We theorized that the passive diffusion of FDP might be due to disruption of the membrane bilayer. To examine this hypothesis, small unilamellar vesicles composed of Egg PC were created in the presence of 60 mM carboxyfluorescein, and the leakage of the sequestered dye was followed upon addition of various concentrations of FDP, fructose, fructose-6-phosphate, or fructose-1-phosphate (0, 5 or 50 mM). These results indicate that increasing concentrations of FDP increase the leakage rate of carboxyfluorescein. In contrast, no concentration of fructose, fructose-6-phosphate, or fructose-1-phosphate resulted in any significant increase in membrane permeability to carboxyfluorescein. To examine whether FDP could pass through cellular membranes, we examined the uptake of 14C-FDP by endothelial cells cultured under hypoxia or normoxia for 4 or 16 h. The uptake of FDP was dose-dependent in both the normoxia and hypoxia treated cells, and was accompanied by no significant loss in endothelial cell viability. Our results demonstrate that FDP can diffuse through membrane bilayers in a dose-dependent manner. 相似文献
11.
Ohinata A Nagai K Nomura J Hashimoto K Hisatsune A Miyata T Isohama Y 《Biochemical and biophysical research communications》2005,326(3):521-526
Aquaporin-5 (AQP5), a major water channel in lung epithelial cells, plays an important role in maintaining water homeostasis in the lungs. Cell surface expression of AQP5 is regulated by not only mRNA and protein synthesis but also changes in subcellular distribution. We investigated the effect of lipopolysaccharide (LPS) on the subcellular distribution of AQP5 in a mouse lung epithelial cell line (MLE-12). LPS caused significant increases in AQP5 in the plasma membrane at 0.5-2 h. Immunofluorescence and Western blotting strongly suggested that LPS altered AQP5 subcellular distribution from an intracellular vesicular compartment to the plasma membrane. The specific p38 MAP kinase inhibitor SB 203580 apparently prevented LPS-induced changes in AQP5 distribution. Furthermore, LPS increased the osmotic water permeability of MLE-12 cells. These findings demonstrate that LPS increases cell surface AQP5 expression by changing its subcellular distribution and increases membrane osmotic water permeability through activation of p38 MAP kinase. 相似文献
12.
Siyu Liu Tatsuya Fukumoto Patrizia Gena Peng Feng Qi Sun Qiang Li Tadashi Matsumoto Toshiyuki Kaneko Hang Zhang Yao Zhang Shihua Zhong Weizhong Zeng Maki Katsuhara Yoshichika Kitagawa Aoxue Wang Giuseppe Calamita Xiaodong Ding 《The Plant journal : for cell and molecular biology》2020,102(4):779-796
Plasma membrane intrinsic proteins (PIPs) are known to be major facilitators of the movement of a number of substrates across cell membranes. From a drought‐resistant cultivar of Oryza sativa (rice), we isolated an OsPIP1;3 gene single‐nucleotide polymorphism (SNP) that is mostly expressed in rice roots and is strongly responsive to drought stress. Immunocytochemistry showed that OsPIP1;3 majorly accumulated on the proximal end of the endodermis and the cell surface around the xylem. Expression of GFP‐OsPIP1;3 alone in Xenopus oocytes or rice protoplasts showed OsPIP1;3 mislocalization in the endoplasmic reticulum (ER)‐like neighborhood, whereas co‐expression of OsPIP2;2 recruited OsPIP1;3 to the plasma membrane and led to a significant enhancement of water permeability in oocytes. Moreover, reconstitution of 10×His‐OsPIP1;3 in liposomes demonstrated water channel activity, as revealed by stopped‐flow light scattering. Intriguingly, by patch‐clamp technique, we detected significant NO3? conductance of OsPIP1;3 in mammalian cells. To investigate the physiological functions of OsPIP1;3, we ectopically expressed the OsPIP1;3 gene in Nicotiana benthamiana (tobacco). The transgenic tobacco plants exhibited higher photosynthesis rates, root hydraulic conductivity (Lpr) and water‐use efficiency, resulting in a greater biomass and a higher resistance to water deficit than the wild‐type did. Further experiments suggested that heterologous expression of OsPIP1;3 in cyanobacterium altered bacterial growth under different conditions of CO2 gas supply. Overall, besides shedding light on the multiple functions played by OsPIP1;3, this work provides insights into the translational value of plant AQPs. 相似文献
13.
BACKGROUND AND AIMS: Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. METHODS: Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. KEY RESULTS: None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. CONCLUSIONS: The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured. 相似文献
14.
Water permeability of the plasma membrane (PM) and the vacuolar membrane (VM) is important for intracellular and transcellular
water movement in plants, because mature plant cells have large central vacuoles. We have developed a new method for measuring
the osmotic water permeability of the PM and VM (P
f1 and P
f2, respectively) in individual plant cells. Here, the theoretical basis and procedure of the method are discussed. Protoplasts
isolated from higher plant tissues are used to measure P
f1 and P
f2. Because of the semi-permeability (selective permeability) of cellular membranes, protoplasts swell or shrink under hypotonic
or hypertonic conditions. A theoretical three-compartment model is presented for simulating time-dependent volume changes in the vacuolar and cytoplasmic spaces in a protoplast during osmotic
excursions. The model describes the theoretical relationships between P
f1, P
f2 and the bulk osmotic water permeability of protoplasts (P
f(bulk)). The procedure for measuring the osmotic water permeability is: (1) P
f(bulk) is calculated from the time when half of the total change in protoplast volume is completed, by assuming that the protoplast
has a single barrier to water movement across it (two-compartment model); (2) P
f2 of vacuoles isolated from protoplasts is obtained in the same manner; and (3) P
f1 is determined from P
f(bulk) and P
f2 according to the three-compartment model. The theoretical relationship between P
fl
(m s−1) and L
Pl
(hydraulic conductivity, l=1, 2) (m s−1 Pa−1) is also discussed.
Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorised users.
Tsuneo Kuwagata and Mari Murai-Hatano contributed equally to the paper. 相似文献
15.
Intra- and transcellular water movements in plants are regulated by the water permeability of the plasma membrane (PM) and vacuolar membrane (VM) in plant cells. In the present study, we investigated the osmotic water permeability of both PM (P ( f1)) and VM (P ( f2)), as well as the bulk osmotic water permeability of a protoplast (P ( f(bulk))) isolated from radish (Raphanus sativus) roots. The values of P ( f(bulk)) and P ( f2) were determined from the swelling/shrinking rate of protoplasts and isolated vacuoles under hypo- or hypertonic conditions. In order to minimize the effect of unstirred layer, we monitored dropping or rising protoplasts (vacuoles) in sorbitol solutions as they swelled or shrunk. P ( f1) was calculated from P ( f(bulk)) and P ( f2) by using the 'three-compartment model', which describes the theoretical relationship between P ( f1), P ( f2) and P ( f(bulk)) (Kuwagata and Murai-Hatano in J Plant Res, 2007). The time-dependent changes in the volume of protoplasts and isolated vacuoles fitted well to the theoretical curves, and solute permeation of PM and VM was able to be neglected for measuring the osmotic water permeability. High osmotic water permeability of more than 500 mum s(-1), indicating high activity of aquaporins (water channels), was observed in both PM and VM in radish root cells. This method has the advantage that P ( f1) and P ( f2) can be measured accurately in individual higher plant cells. 相似文献
16.
NMR-spin echo method was used for comparative study of radial water diffusion in various zones of maize (Zea mays L., cv. Donskaya 1) primary root. Coefficients of water diffusion varied strongly along the root length; the pattern of variations depended on the period during which the diffusion of water molecules was traced. Water diffusion transport in various root zones was unevently sensitive to mercury chloride, an aquaporin inhibitor. The discovered variations in the mobility of water molecules were assigned to morphological and functional features of cells and tissues in the root zones examined; they were interpreted in terms of variable contribution and redistribution of water flows along several transport pathways. The decrease in diffusional water flows could be caused by cell wall modifications (deposition of suberin) that emerge in the endoderm regions distant from the root apex and diminish the contribution of apoplastic transport. 相似文献
17.
水分胁迫对小麦幼苗及悬浮培养细胞中诱导蛋白表达的影响 总被引:5,自引:0,他引:5
丰抗8号小麦幼苗及成熟胚诱导的悬浮培养细胞在水分胁迫(-1.0MPa PEG6000)下,可溶性蛋白含量与蛋白组分变化有差异,幼苗可溶性蛋白含量高于对照,并随生长的延长呈降低趋势;悬浮培养细胞可溶性蛋白含量低于对照,且略有上升;复水后均可恢复对照水平,SDS-PAGE电泳及薄层扫描分析结果表明,幼苗受水分胁迫诱导,出现44.2kD蛋白亚基,该蛋白亚基含量可随胁迫时间延长上升,复水后消失,在正常条件下悬浮培养细胞中含有44.2kD蛋白亚基表达,轻度胁迫处理时,该蛋白亚基含量上升,对悬浮培养细胞进行水分胁迫,该蛋白则表现下降趋势,复水后又可上升。 相似文献
18.
Increased cerebrovascular permeability is an important factor in the development of cerebral oedema after stroke, implicating the blood-brain barrier (BBB). To investigate the effect of hypoxia on the permeability changes, we used a cell culture model of the BBB consisting of a co-culture of brain capillary endothelial cells and glial cells. When endothelial cells from this co-culture model were submitted alone to hypoxic conditions, long exposures (48 h) were necessary to result in an increase in endothelial cell monolayer permeability to [3H]inulin. When endothelial cells were incubated in presence of glial cells, a huge increase in permeability occurred after 9 h of hypoxic conditions. Oxygen glucose deprivation (OGD) resulted in a much shorter time (i.e. 2 h) required for an increase in permeability. We have demonstrated that this OGD-induced permeability increase involves a transcellular rather than a paracellular pathway. Conditioned medium experiments showed that glial cells secrete soluble permeability factors during OGD. However, endothelial cells have to be made sensitive by OGD in order to respond to these glial soluble factors. This work shows that an early cross-talk between glial and endothelial cells occurs during ischaemic stroke and alters BBB transcellular transport by means of glial factor secretions. 相似文献
19.
Spin-echo NMR comparative study of water diffusion in the cortex and stele of maize (Zea mays L.) roots was made with the aim to determine predominant pathways of radial water movement in the root. The root parts examined differed in terms of water diffusion coefficients and sensitivity to HgCl2, the aquaporin blocker. These differences are discussed from the viewpoint of unequal contributions of separate transport pathways (apoplastic, symplastic, and transmembrane) to the overall water flow. Characteristics of water diffusion in roots with the endodermis damaged suggest an inconsiderable contribution of the endodermis into resistance to water movement. 相似文献
20.
Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van’t Hoff model. This yielded an isotonic cell volume of 378 μm3 and an osmotically inactive volume of 165 μm3. To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37 °C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21 °C of 0.18 μm atm−1 min−1. The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21 °C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. 相似文献