首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental factors play a key role in the expression of phenotypic traits and life-history decisions, specifically when they act during early development. In birds, brood size is a main environmental factor affecting development. Experimental manipulation of brood sizes can result in reduced offspring condition, indicating that developmental deficits in enlarged broods have consequences within the affected generation. Yet, it is unclear whether stress during early development can have fitness consequences projecting into the next generation. To study such trans-generational fitness effects, we bred female zebra finches, Taeniopygia guttata, whose mothers had been raised in different experimental brood sizes. We found that adult females were increasingly smaller with increasing experimental brood size in which their mother had been raised. Furthermore, reproductive success at hatching and fledging covaried negatively with the experimental brood size in which their mothers were raised. These results illustrate that early developmental stress can have long-lasting effects affecting reproductive success of future generations. Such trans-generational effects can be life-history responses adapted to environmental conditions experienced early in life.  相似文献   

2.
The nutritional and social conditions that individuals experience during early development can have profound effects on their morphology, physiology, behaviour and life history. Experimental increases in brood size in birds can result in reduced offspring condition and survival, indicating that developmental deficits in enlarged broods have negative fitness consequences within the affected generation. To study long-term effects (i.e. transgenerational effects of developmental stress), we conducted a two-step breeding experiment in which we manipulated early developmental conditions in zebra finches Taeniopygia guttata. We raised zebra finches by manipulating brood sizes and controlled for maternal and genetic effects by cross-fostering. In a previous study, we showed that offspring condition and body size decreased with increasing brood size. Here we show that this effect was carried over to the next generation. Body size in nestlings and at nutritional independence was affected by the brood size in which the mothers were raised. Female offspring did significantly worse than male offspring when the mother had been raised in large broods, suggesting a sex-specific influence of maternal effects. These findings link early developmental stress in females with the phenotype of the next generation via maternal effects.  相似文献   

3.
Models considering sex ratio optima under single foundress strict local mate competition predict that female bias will be reduced by stochasticity in sex allocation, developmental mortality of males and limited insemination capacity of males. In all three cases the number of males per brood is expected to increase with brood size. Sex ratio optima may also be less female biased when several mothers contribute offspring to local mating groups or if non‐local mating occurs between members of different broods; again more males are expected in larger broods. In the parasitoid wasp Goniozus legneri (Hymenoptera: Bethylidae), sex allocation has only a small stochastic component, developmental mortality is low and non‐siblings are unlikely to develop in the same brood. However, the number of males per brood increases with the size of the brood (produced by a single mother). We investigated the further possibilities of limited insemination capacity and non‐local mating using a naturalistic experimental protocol. We found that limited insemination capacity is an unlikely general explanation for the increase in number of males with brood size. All males and females dispersed from both mixed and single sex broods. Although most females in mixed sex broods mated prior to dispersal, these data suggest that non‐local mating is possible, for instance via male immigration to broods containing virgin females. This may influence sex ratio optima and account for the trend in male number.  相似文献   

4.
Developmental conditions in early life frequently have long-term consequences on the adult phenotype, but the adult environment can modulate such long-term effects. Glucocorticoid hormones may be instrumental in mediating developmental effects, but the permanency of such endocrine changes is still debated. Here, we manipulated environmental conditions during development (small vs. large brood size, and hence sibling competition) and in adulthood (easy vs. hard foraging conditions) in a full factorial design in zebra finches, and studied effects on baseline (Bas-CORT) and stress-induced (SI-CORT) corticosterone in adulthood. Treatments affected Bas-CORT in females, but not in males. Females reared in small broods had intermediate Bas-CORT levels as adults, regardless of foraging conditions in adulthood, while females reared in large broods showed higher Bas-CORT levels in hard foraging conditions and lower levels in easy foraging conditions. Female Bas-CORT was also more susceptible than male Bas-CORT to non-biological variables, such as ambient temperature. In line with these results, repeatability of Bas-CORT was higher in males (up to 51%) than in females (25%). SI-CORT was not responsive to the experimental manipulations in either sex and its repeatability was high in both sexes. We conclude that Bas-CORT responsiveness to intrinsic and extrinsic conditions is higher in females than in males, and that the expression of developmental conditions may depend on the adult environment. The latter finding illustrates the critical importance of studying of causes and consequences of long-term developmental effects in other environments in addition to standard laboratory conditions.  相似文献   

5.
The social and ecological conditions that individuals experience during early development have marked effects on their developmental trajectory. In songbirds, brood size is a key environmental factor affecting development, and experimental increases in brood size have been shown to have negative effects on growth, condition and fitness. Possible causes of decreased growth in chicks from enlarged broods are nutritional stress, crowding and increased social competition, i.e. environmental factors known to affect adult steroid levels (especially of testosterone and corticosteroids) in mammals and birds. Little, however, is known about environmental effects on steroid synthesis in nestlings. We addressed this question by following the development of zebra finch (Taeniopygia guttata) chicks that were cross-fostered and raised in different brood sizes. In line with previous findings, nestling growth and cell-mediated immunocompetence were negatively affected by brood size. Moreover, nestling testosterone levels covaried with treatment: plasma testosterone increased with experimental brood size. This result provides experimental evidence that levels of circulating testosterone in nestlings can be influenced by their physiological response to environmental conditions.  相似文献   

6.
The onset of incubation before the end of laying imposes asynchrony at hatching and, therefore, a size hierarchy in the brood. It has been argued that hatching asynchrony might be a strategy to improve reproductive output in terms of quality or quantity of offspring. However, little is known about the mediating effect of hatching asynchrony on offspring quality when brood reduction occurs. Here, we investigate the relationship between phenotypic quality and hatching asynchrony in Common Kestrel Falco tinnunculus nestlings in Spain. Hatching asynchrony did not increase breeding success or nestling quality. Furthermore, hatching asynchrony and brood reduction had different effects on nestlings’ phytohaematogglutinin (PHA)‐mediated immune response and nestling growth. In asynchronous and reduced broods (in which at least one nestling died), nestlings showed a stronger PHA‐mediated immune response and tended to have a smaller body size compared with nestlings raised in synchronous and reduced broods. When brood reduction occurred in broods hatched synchronously, there was no effect on nestling size, but nestlings had a relatively poor PHA‐mediated immune response compared with nestlings raised in asynchronous and reduced broods. We suggest that resources for growth can be directed to immune function only in asynchronously hatched broods, resulting in improved nestling quality, as suggested by their immune response. We also found that males produced a greater PHA‐mediated immune response than females only in brood‐reduced nests without any effect on nestling size or condition, suggesting that females may trade off immune activities and body condition, size or weight. Overall, our results suggest that hatching pattern and brood reduction may mediate resource allocation to different fitness traits. They also highlight that the resolution of immune‐related trade‐offs when brood reduction occurs may differ between male and female nestlings.  相似文献   

7.
We assessed whether adult House Sparrows Passer domesticus adjusted their provisioning in response to an experimental increase in the nutritional condition of their nestlings. When we supplemented chicks directly with additional food, male parents, but not female parents, reduced their provisioning. The results for males, but not females, run contrary to a previous experiment in this species. In addition, female provisioning was positively associated with both brood size and the age of the brood. In contrast, whereas male provisioning was positively associated with brood size, males did not increase provisioning as their chicks grew older. Males, but not females, exhibited repeatability in their provisioning. Food supplementation had a larger positive effect upon nestling survival in smaller broods than in larger broods. Overall, there appear to be fundamental differences between males and females in how decisions regarding the level of parental investment in the current brood are made.  相似文献   

8.
Optimal investment into life-history traits depends on the environmental conditions that organisms are likely to experience during their life. Evolutionary theory tells us that optimal investment in reproduction versus maintenance is likely to shape the pattern of age-associated decline in performance, also known as aging. The currency that is traded against different vital functions is, however, still debated. Here, we took advantage of a phenotypic manipulation of individual quality in early life to explore (1) long-term consequences on life-history trajectories, and (2) the possible physiological mechanism underlying the life-history adjustments. We manipulated phenotypic quality of a cohort of captive zebra finches (Taeniopygia guttata) by assigning breeding pairs to either an enlarged or a reduced brood. Nestlings raised in enlarged broods were in poorer condition than nestlings raised in reduced broods. Interestingly, the effect of environmental conditions experienced during early life extended to the age at first reproduction. Birds from enlarged broods delayed reproduction. Birds that delayed reproduction produced less offspring but lived longer, although neither fecundity nor longevity were directly affected by the experimental brood size. Using the framework of the life-table response experiment modeling, we also explored the effect of early environmental condition on population growth rate and aging. Birds raised in reduced broods tended to have a higher population growth rate, and a steeper decrease of reproductive value with age than birds reared in enlarged broods. Metabolic resources necessary to fight off the damaging effect of reactive oxygen species (ROS) could be the mechanism underlying the observed results, as (1) birds that engaged in a higher number of breeding events had a weaker red blood cell resistance to oxidative stress, (2) red blood cell resistance to oxidative stress predicted short-term mortality (but not longevity), and (3) was related with a parabolic function to age. Overall, these results highlight that early condition can have long-term effects on life-history trajectories by affecting key life-history traits such as age at first reproduction, and suggest that the trade-off between reproduction and self-maintenance might be mediated by the cumulative deleterious effect of ROS.  相似文献   

9.
The body condition index (i.e., body mass corrected for age or size differences) is commonly used to investigate offspring condition in nestling birds. The body condition index reflects different parameters related to the general nutritional state of nestlings and may predict survival prospects. Since conditions experienced during the growth period can affect the fitness of nestlings in adulthood, we investigated proximate and ultimate factors underlying body condition index variation in kestrel (Falco tinnunculus) nestlings in a 9-year field study and we carried out two cross-fostering experiments to disentangle the origin (genetics plus maternal effects) and rearing (environment effect) components of body condition index variation. In total, we sampled 2,065 nestlings from 464 broods and used 121 nestlings from 24 broods in the cross-fostering experiments. We found that nestlings from larger broods had higher body condition index than nestlings from smaller ones, but this pattern did not emerge in two of the 9 years of study; nestlings born later in the breeding season had lower body condition index in some years but not in others; the decrease of body condition index over the breeding season emerged in all but three-chick broods; males and females did not differ neither in body condition index nor in the covariation between body mass and wing length, while this result was limited to one of the nine field study years; the annual mean value of body condition index did not covary with the total rainfall; both the origin and rearing components explained body condition index variation, but their relative contributions varied from a year to another. Overall, these results suggest that the brood size is not a good predictor of body condition index; the rule “nesting early in the season is better” is less general than previously thought; the body condition index may contain origin variance, whose expression may be modulated by environmental conditions.  相似文献   

10.
In sexually size‐dimorphic species, brood sex composition may exert differential effects on sex‐specific mortality. We investigated the sex‐specific mortality and body condition in relation to brood sex composition in nestlings of the black‐billed magpie Pica pica. Neither significantly sex‐biased production at hatching nor overall sex‐biased mortality during the nestling period was found. Sex‐specific mortality as a function of brood sex composition, however, differed between female and male nestlings. We found higher mortality for females in male‐biased broods and higher mortality for males in female‐biased broods, a phenomenon that we call ‘rarer‐sex disadvantage’. As a result, fledging sex ratios became more biased in the direction of bias at hatching, a phenomenon that cannot be readily explained by previous hypotheses for sex‐specific mortality. Two temporal variables, fledging date and laying date, were also correlated with sex‐specific mortality: female nestlings in earlier broods experienced higher mortality than male nestlings whereas male nestlings in later broods experienced higher mortality. We suggest that this unusual pattern of mortality may be explained by adaptive adjustments of brood sex composition by parents, either through the effects of a slight sex difference in offspring dispersal patterns on parental fitness, or owing to sex differences as regards the benefits of early fledging.  相似文献   

11.
Early life stressors can impair song in songbirds by negatively impacting brain development and subsequent learning. Even in species in which only males sing, early life stressors might also impact female behavior and its underlying neural mechanisms, but fewer studies have examined this possibility. We manipulated brood size in zebra finches to simultaneously examine the effects of developmental stress on male song learning and female behavioral and neural response to song. Although adult male HVC volume was unaffected, we found that males from larger broods imitated tutor song less accurately. In females, early condition did not affect the direction of song preference: all females preferred tutor song over unfamiliar song in an operant test. However, treatment did affect the magnitude of behavioral response to song: females from larger broods responded less during song preference trials. This difference in activity level did not reflect boldness per se, as a separate measure of this trait did not differ with brood size. Additionally, in females we found a treatment effect on expression of the immediate early gene ZENK in response to tutor song in brain regions involved in song perception (dNCM) and social motivation (LSc.vl, BSTm, TnA), but not in a region implicated in song memory (CMM). These results are consistent with the hypothesis that developmental stressors that impair song learning in male zebra finches also influence perceptual and/or motivational processes in females. However, our results suggest that the learning of tutor song by females is robust to disturbance by developmental stress. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

12.
Most studies dealing with the trade-off between offspring number and quality have overlooked the long-term consequences for the progeny. High investment in offspring number usually results in an increased competition among nest mates. The deterioration of the early developmental conditions, due to this increased competition, can impair individual quality over the long term, and subsequently affect survival and lifetime fecundity. Moreover, the consequences of the allocation rule to offspring number vs. quality can extend across generations and give raise to grandparental effects. These transgenerational trade-offs have been explored rarely. In the present study, we manipulated the breeding effort of captive zebra finches ( Taeniopygia guttata ) by offering them enlarged or reduced broods. Offspring reared under these conditions were allowed to breed freely in an outdoor aviary, during their entire lifespan. Second-generation fledglings whose mother was raised in enlarged broods were in lower body condition than offspring whose mother was raised in reduced broods. However, second-generation fledglings were not affected by the brood size experienced by the father. These results show that the solution of parental dilemma, whether producing a small number of high quality offspring or a large number of poor quality descendants, must take into account the long-term transgenerational effects acting on grandchildren.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 469–474.  相似文献   

13.
Harsh environmental conditions in form of low food availability for both offspring and parents alike can affect breeding behavior and success. There has been evidence that food scarce environments can induce competition between family members, and this might be intensified when parents are caring as a pair and not alone. On the other hand, it is possible that a harsh, food-poor environment could also promote cooperative behaviors within a family, leading, for example, to a higher breeding success of pairs than of single parents. We studied the influence of a harsh nutritional environment on the fitness outcome of family living in the burying beetle Nicrophorus vespilloides. These beetles use vertebrate carcasses for reproduction. We manipulated food availability on two levels: before and during breeding. We then compared the effect of these manipulations in broods with either single females or biparentally breeding males and females. We show that pairs of beetles that experienced a food-poor environment before breeding consumed a higher quantity of the carcass than well-fed pairs or single females. Nevertheless, they were more successful in raising a brood with higher larval survival compared to pairs that did not experience a food shortage before breeding. We also show that food availability during breeding and social condition had independent effects on the mass of the broods raised, with lighter broods in biparental families than in uniparental ones and on smaller carcasses. Our study thus indicates that a harsh nutritional environment can increase both cooperative as well as competitive interactions between family members. Moreover, our results suggest that it can either hamper or drive the formation of a family because parents choose to restrain reproductive investment in a current brood or are encouraged to breed in a food-poor environment, depending on former experiences and their own nutritional status.  相似文献   

14.
Brood size and other life-history traits of females affect male investment in mating. Female Uca tetragonon, producing relatively small broods, were attracted to the burrows of males for underground mating (UM) while carrying eggs. Most UM females released larvae and ovulated new broods during the pairing, averaging 3.9 days. While a female was incubating one brood, another brood was developing within the ovaries because the females were feeding adequately during incubation. These findings suggest that in U. tetragonon, a small-brood species, females increase the total number of broods produced by breeding continually. In contrast, in large-brood species, feeding by ovigerous females is relatively brief and not enough to prepare the next brood during incubation, inducing temporal separation between incubation and brood production. Unlike females in other ocypodids where females with large broods remain in the breeding burrows of males, most female U. tetragonon left the male after UM. Wandering in female U. tetragonon after the pairs separate may occur because their small broods are adequately protected by an abdominal flap. Relative brood size probably determines the vulnerability of the incubated broods to the females' surface behavior. Hence, male reproductive success in large-brood species may decrease greatly if males expel their mates after ovulation, although this is not necessarily so in small-brood species. Whether the male drives away the female or not may depend on which behavior within either small- or large-brood species yields the greater male reproductive success. In U. tetragonon some females extruded eggs in their own burrows after surface mating as well as in males' burrows after UM. It was unclear whether females chose a male with a larger burrow as an UM mate unlike several large-brood species. Burrows of both UM males and ovigerous females in U. tetragonon were relatively smaller than those in some large-brood species, indicating that incubation of small broods does not require large burrows. Rather than benefits of UM by female choice, wandering resulting from intersexual conflict, and sperm competition may explain why some females mate in males' burrows in this small-brood species.  相似文献   

15.
Individual offspring within a brood may receive different amounts of provisioning from the male and female parents. Some hypotheses suggest that this bias is the result of an active and adaptive choice by parents. An alternative hypothesis is that feeding biases arise as a result of a constraint of fitting large prey items into small gapes. In an experiment with pied flycatchers, Ficedula hypoleuca , we tested for sex-biased allocation to junior nestlings in asynchronous broods and whether this could be explained by active parental choice or by passive allocation according to prey size and gape size. In both control broods and broods with experimentally increased degree of asynchrony, prey types did not differ between parents but females brought smaller prey than males at younger but not older nestling stages. At younger but not older nestling stages, the majority of feeds to junior nestlings were from females, and the smaller nestlings consumed smaller prey than older siblings. However, there was no evidence of active preference of small nestlings by females as parents did not differ in the tendency to bypass a begging senior nestling in order to feed a junior nestling. Provisioning rates by females were lower than those by males when nestlings were young and we suggest that foraging time constraints caused by the need to brood offspring result in females bringing smaller prey than males. In turn, the larger prey brought by males was more often transferred to larger offspring after the smaller ones failed to swallow it. In such cases, 'preferential' feeding of small nestlings by females may simply be a passive side effect of foraging constraints and gape-size limitations.  相似文献   

16.
We hypothesized that increasing chick plasma testosterone concentrations, transmitted from the mothers via their eggs, enhances survival of their offspring and that the fitness of the young, depending on the maternal hormones, is influenced by parental quality. To test our hypotheses we distinguished the broods of white storks Ciconia ciconia L. where chicks died and those where all chicks survived. We analysed the plasma testosterone concentrations in the chicks, the ability of the chicks to be first to receive food and the mass of chicks before fledging in relation to their hatching order and recorded the body mass of parents and food mass delivered by them.
Female storks used the asymmetries in testosterone concentrations within a brood to control brood size and adjusted the number of young hatched to match the parental ability to rear offspring. Females of poor condition altered the testosterone concentrations to produce large differences between the chicks: The first-hatched chicks, which had high plasma testosterone levels, responded faster to the feeding parent and received more food than did their younger siblings. One or two later-hatched chicks, which had lower testosterone levels, died in these broods. Females in good condition produced small differences in testosterone concentrations between the chicks and all chicks survived in their brood. Chicks that were raised by the females of poor condition in reduced broods were heavier than chicks that were raised by females of good condition in broods where all chicks survived.
We suggest that the control of brood size by testosterone concentration, transmitted by the mother to the chicks, is a hormonal means of condition-dependent reproductive strategy in the white stork.  相似文献   

17.
Parents should vary their level of investment in sons and daughters in response to the fitness costs and benefits accrued through male and female offspring. I investigated brood sex ratio biases and parental provisioning behaviour in the brown thornbill, Acanthiza pusilla, a sexually dimorphic Australian passserine. Parents delivered more food to male-biased than female-biased broods. However, factors determining parental provisioning rates differed between the sexes. Female provisioning rates were related to brood sex ratio in both natural and experimental broods with manipulated sex ratios. In contrast, male provisioning rates were not affected by brood sex ratio in either natural or experimental broods. However, males in established pairs provisioned at a higher rate than males in new pairs. Data on the sex ratio of 109 broods suggest that female brown thornbills adjust their primary sex ratio in response to pair bond duration. Females in new pairs produced broods with significantly fewer sons than females in established pairs. This pattern would be beneficial to females if the costs of rearing sons were higher for females in new than established pairs. This may be the case since females in new pairs provisioned experimental all-male broods at elevated rates. The condition of nestlings also tended to decline more in these all-male broods than in other experimental broods. This will have additional fitness consequences because nestling mass influences recruitment in thornbills. Female thornbills may therefore obtain significant fitness benefits from adjusting their brood sex ratio in response to the status of their pair bond. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

18.
There is little experimental evidence testing whether currentbrood size and past brood mortality influence mate desertion.In the cichlid Aequidens coeruleopunctatus both parents initiallydefend offspring. In a field study, all experimental broods,irrespective of initial brood size (222.9 ± 60.4, mean± SD), were manipulated to a size of 100 fry. Neitherthe duration nor investment of females in parental care differed between control and brood reduced pairs, even though care seemedcostly. On average, females lost 5.1 ± 4.8% of initialweight while guarding a brood until independence. In contrast,males with experimentally reduced broods guarded fry for significantlyfewer days before deserting their mate than did males fromcontrol pairs with natural-sized broods (20.5 ± 7.5 vs. 14.2 ± 6.2 days). In at least 20% of cases (n = 9/45),the deserting male immediately mated with another female. Maleswith experimentally reduced broods also spent less time guardingfry before deserting and attacked fewer brood predators thandid males with control broods. For broods manipulated to have100 fry, there was a significant negative relationship betweenthe days until male desertion and the proportion of the initialbrood removed. This indicates that male assessment of the futuresuccess of the current brood (hence its reproductive value)is based on past mortality and/or that there is variation amongmales in the expected size of future broods. Both current broodsize and brood size relative to initial brood size are thereforepredictors of male, but not female, parental behavior and matedesertion. Female care may be unaffected by brood reductiondue to limited breeding opportunities and partial compensationfor reduced male care.  相似文献   

19.
Naguib M  Nemitz A 《PloS one》2007,2(9):e901
The environmental conditions individuals experience during early development are well known to have fundamental effects on a variety of fitness-relevant traits. Although it is evident that the earliest developmental stages have large effects on fitness, other developmental stages, such as the period when secondary sexual characters develop, might also exert a profound effect on fitness components. Here we show experimentally in male zebra finches, Taeniopygia guttata, that nutritional conditions during this later period have immediate effects on male plumage ornaments and on their attractiveness as adults. Males that had received high quality food during the second month of life, a period when secondary sexual characteristics develop, were significantly more attractive as adults in mate choice tests than siblings supplied with standard food during this period. Preferred males that had experienced better nutritional conditions had larger orange cheek patches when nutritional treatments ended than did unpreferred males. Sexual plumage ornaments of young males thus are honest indicators of nutritional conditions during this period. The mate choice tests with adult birds indicate that nutritional conditions during the period of song learning, brain and gonad development, and moult into adult plumage have persisting effects on male attractiveness. This suggests that the developmental period following nutritional dependence from the parents is just as important in affecting adult attractiveness as are much earlier developmental periods. These findings thus contribute to understanding the origin and consequences of environmentally determined fitness components.  相似文献   

20.
In birds, poor rearing conditions usually have negative effects on T-cell-mediated immune response. However, earlier studies demonstrate that fitness-related traits such as body mass may show sex-specific patterns when subject to alteration of rearing conditions. Therefore, to investigate whether deterioration of rearing conditions influences the development of immune function differently in male and female nestlings, we performed brood size manipulation experiments on blue tit (Parus caeruleus) nestlings. To alter rearing conditions, some broods were increased by three nestlings soon after hatching, while other broods were left non-manipulated. Immune response was assessed as a hypersensitivity reaction to phytohaemagglutinin in 11-day-old nestlings. Additionally, we studied the consequences of brood size manipulation for fledgling body mass and tarsus length. The enlargement of brood size had different effects on the cellular immune responses of male and female nestlings, with males being more negatively affected than their female nest-mates. Sex-specific effects of poor rearing conditions were also recorded for tarsus length, such that tarsus growth was more retarded in female than in male nestlings. We discuss the effects of deterioration of rearing conditions on sex-specific development of cell-mediated immunity with respect to sexual dimorphism of size and developmental strategies in male and female nestlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号