共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA structural dynamics: longitudinal breathing as a possible mechanism for the B in equilibrium Z transition. 总被引:2,自引:4,他引:2
下载免费PDF全文

S C Harvey 《Nucleic acids research》1983,11(14):4867-4878
The transition from B-DNA to Z-DNA not only requires a change in the helix architecture from a right-handed to a left-handed form, but also requires that all of the base pairs be flipped over. A transition mechanism is proposed in which the base pairs flip over one at a time while keeping the Watson-Crick hydrogen bonds intact. The two base pairs on either side of the pair that turns over form a kind of dynamic sandwich around it, and the flip takes place in a cavity that is formed when the distance between them is increased from about 7A in the intact helix to about 14A in the transition state. Since the transition occurs in two steps (formation of the cavity, followed by the base pair flip) and since the cavity propagates down the helix after the base pair is turned over, the mechanism accounts for the cooperativity of the B in equilibrium Z transition. 相似文献
2.
Trypsinogen-trypsin transition: a molecular dynamics study of induced conformational change in the activation domain 总被引:1,自引:0,他引:1
The trypsinogen to trypsin transition has been investigated by a stochastic boundary molecular dynamics simulation that included a major portion of the trypsin molecule and the surrounding solvent. Attention focused on the "activation domain", which crystallographic studies have shown to be ordered in trypsin and disordered in its zymogen, trypsinogen. The chain segments that form the activation domain were found to exhibit large fluctuations during the simulation of trypsin. To model a difference between trypsin and trypsinogen, the N-terminal residues Ile-16 and Val-17 were removed in the former and replaced by water molecules. As a result of the perturbation, a structural drift of 1-2 A occurred that is limited to the activation domain. Glycine residues are found to act as hinges for the displaced chain segments. 相似文献
3.
Knee KM Dixit SB Aitken CE Ponomarev S Beveridge DL Mukerji I 《Biophysical journal》2008,95(1):257-272
The A-to-B form transition has been examined in three DNA duplexes, d(CGCGAATTCGCG)2, d(CGCGAATTGCGC), and d(CGCAAATTTCGC), using circular dichroism spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and molecular dynamics (MD) simulation. Circular dichroism spectra confirm that these molecules adopt the A form under conditions of reduced water activity. UVRR results, obtained under similar conditions, suggest that the transition involves a series of intermediate forms between A and B. Cooperative and distinct transitions were observed for the bases and the sugars. Independent MD simulations on d(CGCGAATTCGCG)2 show a spontaneous change from the A to B form in aqueous solution and describe a kinetic model that agrees well with UVRR results. Based on these observations, we predict that the mechanism of the transition involves a series of A/B hybrid forms and is sequential in nature, similar to previous crystallographic studies of derivatized duplexes. A simulation in which waters were restrained in the major groove of B DNA shows a rapid, spontaneous change from B to A at reduced water activity. These results indicate that a quasiergodic sampling of the solvent distribution may be a problem in going from B to A at reduced water activity in the course of an MD simulation. 相似文献
4.
Ping Xie 《Journal of theoretical biology》2009,259(3):434-122
The fidelity of DNA synthesis by DNA polymerase is significantly increased by a mechanism of proofreading that is performed at the exonuclease active site separate from the polymerase active site. Thus, the transition of DNA between the two active sites is an important activity of DNA polymerase. Here, based on our proposed model, the rates of DNA transition between the two active sites are theoretically studied. With the relevant parameters, which are determined from the available crystal structure and other experimental data, the calculated transfer rate of correctly base-paired DNA from the polymerase to exonuclease sites and the transfer rate after incorporation of a mismatched base are in good agreement with the available experimental data. The transfer rates in the presence of two and three mismatched bases are also consistent with the previous experimental data. In addition, the calculated transfer rate from the exonuclease to polymerase sites has a large value even with the high binding affinity of 3′-5′ ssDNA for the exonuclease site, which is also consistent with the available experimental value. Moreover, we also give some predictive results for the transfer rate of DNA containing only A:T base pairs and that of DNA containing only G:C base pairs. 相似文献
5.
We report on an atomistic molecular dynamics simulation of the complete conformational transition of Escherichia coli adenylate kinase (ADK) using the recently developed TEE-REX algorithm. Two phases characterize the transition pathway of ADK, which folds into the domains CORE and LID and the AMP binding domain AMPbd. Starting from the closed conformation, half-opening of the AMPbd precedes a partially correlated opening of the LID and AMPbd, defining the second phase. A highly stable salt bridge D118-K136 at the LID-CORE interface, contributing substantially to the total nonbonded LID-CORE interactions, was identified as a major factor that stabilizes the open conformation. Alternative transition pathways, such as AMPbd opening following LID opening, seem unlikely, as full transition events were not observed along this pathway. The simulation data indicate a high enthalpic penalty, possibly obstructing transitions along this route. 相似文献
6.
Mass-weighted molecular dynamics simulation and conformational analysis of polypeptide. 总被引:1,自引:1,他引:1
下载免费PDF全文

B Mao 《Biophysical journal》1991,60(3):611-622
Atomic motions in protein molecules have been studied by molecular dynamics (MD) simulations; dynamics simulation methods have also been employed in conformational studies of polypeptide molecules. It was found that when atomic masses are weighted, the molecular dynamics method can significantly increase the sampling of dihedral conformation space in such studies, compared to a conventional MD simulation of the same total simulation time length. Herein the theoretical study of molecular conformation sampling by the molecular dynamics-based simulation method in which atomic masses are weighted is reported in detail; moreover, a numerical scheme for analyzing the extensive conformational sampling in the simulation of a tetrapeptide amide molecule is presented. From numerical analyses of the mass-weighted molecular dynamics trajectories of backbone dihedral angles, low-resolution structures covering the entire backbone dihedral conformation space of the molecule were determined, and the distribution of rotationally stable conformations in this space were analyzed quantitatively. The theoretical analyses based on the computer simulation and numerical analytical methods suggest that distinctive regimes in the conformational space of the peptide molecule can be identified. 相似文献
7.
The transition between the B and Z conformations of DNA investigated by targeted molecular dynamics simulations with explicit solvation
下载免费PDF全文

The transition between the B and Z conformations of double-helical deoxyribonucleic acid (DNA) belongs to the most complex and elusive conformational changes occurring in biomolecules. Since the accidental discovery of the left-handed Z-DNA form in the late 1970s, research on this DNA morphology has been engaged in resolving questions relative to its stability, occurrence, and function in biological processes. While the occurrence of Z-DNA in vivo is now widely recognized and the major factors influencing its thermodynamical stability are largely understood, the intricate conformational changes that take place during the B-to-Z transition are still unknown at the atomic level. In this article, we report simulations of this transition for the 3'-(CGCGCG)-5' hexamer duplex using targeted molecular dynamics with the GROMOS96 force field in explicit water under different ionic-strength conditions. The results suggest that for this oligomer length and sequence, the transition mechanism involves: 1), a stretched intermediate conformation, which provides a simple solution to the important sterical constraints involved in this transition; 2), the transient disruption of Watson-Crick hydrogen-bond pairing, partly compensated energetically by an increase in the number of solute-solvent hydrogen bonds; and 3), an asynchronous flipping of the bases compatible with a zipperlike progression mechanism. 相似文献
8.
BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B(12) into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the "alternating access" mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process. 相似文献
9.
Rate of B to Z structural transition of supercoiled DNA 总被引:4,自引:0,他引:4
The forward rate of the B to Z transition induced by negative supercoiling of plasmid DNA containing an alternating C-G sequence has been examined using the binding of Z-DNA-specific antibodies to follow the transition. DNA samples of a plasmid containing a d(pCpG)16 X d(pCpG)16 insert were supercoiled to different extents and appropriate amounts of ethidium were bound to the DNAs to relax them and to keep the alternating C-G sequence in the right-hand helical form. Following the rapid removal of ethidium by passage through a column of cation exchange resin, the DNA becomes negatively supercoiled, which induces the flipping of the helical hand of the C-G insert. The rate of the transition is strongly dependent on the degree of supercoiling. The transition is complete in less than 50 seconds for a DNA with a specific linking difference (superhelical density) sigma of -0.09. For the same DNA, the half-time of the transition is about two minutes at sigma = -0.07 and about a factor of 10 slower at sigma = -0.05. 相似文献
10.
Molecular dynamics (MD) simulations to model possible reaction pathways of the dynemicin-A-DNA cleavage mechanism were performed. Two base-pairs sequences, ApCpTp-ApCpTp-3′/TpGpApTpGpAp-5′ and CpApCpGpGpGp-3′/GpTpGpCpCpCp-5′, were considered in the calculations. A model based on a prior study of intercalation of dynemicin-A and posterior activation of the drug was assumed in this study. The minimum energy minor groove intercalation complexes for dynemicin-A were used as starting structures in the MD simulations for the reactive intermediate species involved in the postulated action mechanism. The dynemicin-A diol derivative product of the opening of the epoxy ring was used as a “steric mimic” ligand for the DNA-reactive diaryl intermediate. The calculated changes in the geometry of the intercalation complex, due to the opening of the epoxy ring, correspond to the approach of the postulated intermolecular reaction centers in the intercalation states that are responsible for the highest observed DNA cleavage frequency observed. Conversely, unfavorable reaction geometries were found for the intercalation modes corresponding to the lowest observed DNA cutting frequencies. © 1993 John Wiley & Sons, Inc. 相似文献
11.
Lee HS Robinson RC Joo CH Lee H Kim YK Choe H 《Biochemical and biophysical research communications》2006,342(3):702-709
Gelsolin consists of six related domains (G1-G6) and the C-terminal half (G4-G6) acts as a calcium sensor during the activation of the whole molecule, a process that involves large domain movements. In this study, we used targeted molecular dynamics simulations to elucidate the conformational transitions of G4-G6 at an atomic level. Domains G4 and G6 are initially ruptured, followed by a rotation of G6 by approximately 90 degrees , which is the dominant conformational change. During this period, local conformational changes occur at the G4 and G5 calcium-binding sites, facilitating large changes in interdomain distances. Alterations in the binding affinities of the calcium ions in these three domains appear to be related to local conformational changes at their binding sites. Analysis of the relative stabilities of the G4-G6-bound calcium ions suggests that they bind first to G6, then to G4, and finally to G5. 相似文献
12.
The interaction of DNA and RNA with Cu(II), Mg(II), [Co(NH3)6]3+ [Co(NH3)5Cl]2+ chlorides and, cis- and trans-Pt(NH3)2Cl2 (CIS-DDP, trans-DDP) has been studied by Fourier Transform Infrared (FT-IR) spectroscopy and a correlation between metal-base binding and conformational transitions in the sugar pucker has been established. It has been found that RNA did not change from A-form on complexation with metals, whereas DNA exhibited a B to Z transition. The marker bands for the A-form (C3'-endo-anti conformation) were found to be near 810-816 cm-1, while the bands at 825 and 690 cm-1 are marker bands for the B-conformation (C2'-endo, anti). The B to Z (C3'-endo. syn conformation) transition is characterized by the shift of the band at 825 cm-1 to 810-816 cm-1 and the shift of the guanine band at 690 cm-1 to about 600-624 cm-1. 相似文献
13.
R Soliva F J Luque C Alhambra M Orozco 《Journal of biomolecular structure & dynamics》1999,17(1):89-99
State of the art molecular dynamic simulations show that simple modification of the sugar puckering of 2'deoxyriboses leads to a reversible change between two stable forms of DNA which resemble very closely the canonical A and B duplex forms. Analysis of the A-type and B-type structures reveals interesting, and previously unknown features of these two families of conformations of the DNA. 相似文献
14.
15.
Ambrosio AL Nonato MC de Araújo HS Arni R Ward RJ Ownby CL de Souza DH Garratt RC 《The Journal of biological chemistry》2005,280(8):7326-7335
Agkistrodon contortrix laticinctus myotoxin is a Lys(49)-phospholipase A(2) (EC 3.1.1.4) isolated from the venom of the serpent A. contortrix laticinctus (broad-banded copperhead). We present here three monomeric crystal structures of the myotoxin, obtained under different crystallization conditions. The three forms present notable structural differences and reveal that the presence of a ligand in the active site (naturally presumed to be a fatty acid) induces the exposure of a hydrophobic surface (the hydrophobic knuckle) toward the C terminus. The knuckle in A. contortrix laticinctus myotoxin involves the side chains of Phe(121) and Phe(124) and is a consequence of the formation of a canonical structure for the main chain within the region of residues 118-125. Comparison with other Lys(49)-phospholipase A(2) myotoxins shows that although the knuckle is a generic structural motif common to all members of the family, it is not readily recognizable by simple sequence analyses. An activation mechanism is proposed that relates fatty acid retention at the active site to conformational changes within the C-terminal region, a part of the molecule that has long been associated with Ca(2+)-independent membrane damaging activity and myotoxicity. This provides, for the first time, a direct structural connection between the phospholipase "active site" and the C-terminal "myotoxic site," justifying the otherwise enigmatic conservation of the residues of the former in supposedly catalytically inactive molecules. 相似文献
16.
Satoshi Yamasaki Tohru Terada Kentaro Shimizu Hidetoshi Kono Akinori Sarai 《Nucleic acids research》2009,37(20):e135
Proteins recognize DNA sequences by two different mechanisms. The first is direct readout, in which recognition is mediated by direct interactions between the protein and the DNA bases. The second is indirect readout, which is caused by the dependence of conformation and the deformability of the DNA structure on the sequence. Various energy functions have been proposed to evaluate the contribution of indirect readout to the free-energy changes in complex formations. We developed a new generalized energy function to estimate the dependence of the deformability of DNA on the sequence. This function was derived from molecular dynamics simulations previously conducted on B-DNA dodecamers, each of which had one possible tetramer sequence embedded at its center. By taking the logarithm of the probability distribution function (PDF) for the base-step parameters of the central base-pair step of the tetramer, its ability to distinguish the native sequence from random ones was superior to that with the previous method that approximated the energy function in harmonic form. From a comparison of the energy profiles calculated with these two methods, we found that the harmonic approximation caused significant errors in the conformational energies of the tetramers that adopted multiple stable conformations. 相似文献
17.
Members of the gram-positive mycolata bacteria have unusual cell envelopes which help them to avoid the immune system and the effects of most antibiotics, whilst rendering them permeable to solutes of importance in industrial bioconversion. It is therefore of interest to understand the molecular mechanisms for this selective permeability. PorB is an unusual porin from the outer membrane (OM) of Corynebacterium glutamicum. It has been proposed as an atypical α-helical, symmetrical homo-pentameric architecture, with an unusual distribution of polar amino acids on its surface. The proposed structure is too short to traverse a typical phospholipid bilayer, in contrast with the β-barrel porins of Gram-negative bacteria. Nevertheless, it has been shown to form small anion-selective channels in membranes typical of Escherichia coli. To further understand its function, we have performed ~400 ns of all-atom and ~270 μs of coarse-grained simulations of PorB in a range of membrane mimetic and phospholipid milieus. Our results suggest that PorB can undergo spontaneous conformational rearrangements that allow it to adapt to its local lipid environment. We speculate that the increased flexibility of this α-helical porin in comparison with rigid β-barrels may be an adaptation for the heterogeneous mycolic OM, and explains its demonstrated ability to form measurable pores with phospholipid membranes. 相似文献
18.
G P Kishchenko 《Biofizika》1990,35(5):821-826
The following model of aging is proposed: 1) defective proteins with anomalous primary structures are synthesized sometimes; 2) these defective proteins are precipitated in cells and intercellular spaces; 3) the precipitated proteins block them up under the influence of radicals; 4) a decrease of cell functional ability below some level results in the destruction of the organism regulation function. A formula is concluded connecting the life span (Tlife) with DNA-repair velocity (Vrep) and time of protein exchange (Tex): Tlife = (1/3).K.(Vper/Vdum).(Tfix + Tex), where K-admitted share of fixated proteins (fixated/native), Vdam-damage velocity, Tfix-fixation time of defective proteins. This analytical dependence was probed on literature data for man, elephant, cow, rabbit, guinea pig, golden hamster, rat, mouse and shrew. Tfix is shown to equal 5 divided by 10 days. A good agreement between the theoretical dependence Tlife(Tex) and literature data was obtained with the exception of the data for man. 相似文献
19.
Aurora B kinase is essential in the process of mitosis, and its overexpression has been reported to be associated with a number of solid tumors. We therefore carried out molecular docking, molecular dynamics, and molecular mechanics Poisson-Boltzmann/surface area (MM-PBSA) calculations on several structurally diverse inhibitors (pentacyclic, pyrimidine, quinazoline, and pyrrolopyridine derivatives) and Aurora B kinase to explore the structural and chemical features responsible for the binding recognition mechanism. Molecular simulations reveal that the binding site mainly consists of six binding regions (sites A-F). We have identified that sites B and C are required for optimum binding in Aurora B-inhibitor complexes, sites A and F are needed to improve pharmacokinetic properties, while sites D and E lead to enhanced stability. We verified that hydrogen bonding to the hinge region and hydrophobic contact with the conserved hydrophobic pocket are of critical importance in the systems studied. Specifically, the amino acids Glu171, Phe172, and Ala173 in the hinge region and Leu99, Val107, and Leu223 in the conserved hydrophobic pocket probably account for the high binding affinities of these systems, as shown by hydrogen-bonding analysis and energy decomposition analysis. Hydrophobic contact with Phe172 is also in agreement with experimental data. In addition, the MM-PBSA calculations reveal that the binding of these inhibitors to Aurora B kinase is mainly driven by van der Waals/nonpolar interactions. The findings of this study should help to elucidate the binding pattern of Aurora B inhibitors and aid in the design of novel active ligands. 相似文献
20.
Pulse-radiolysis experiments were performed on solutions containing methyl or benzyl viologen and flavodoxin. Viologen radicals are formed after the pulse. The kinetics of the reaction of these radicals with flavodoxin were studied. The kinetics observed depend strongly on the concentration of oxidized viologen. Therefore one must conclude that a relatively stable intermediate is formed after the reduction of flavodoxin. The midpoint potential of the intermediate state is -(480 +/- 30) mV, and is hardly dependent on the pH between 7 and 9.2. Due to a conformational change (k2 approximately equal to 10(5)S-1) the intermediate state decays to the stable semiquinone form of flavodoxin. The delta G of the conformational change at pH 8 is about 29 kJ mol -1 (0.3 eV). This means that the upper limit for the pK of N-5 in the semiquinone form will be 13. The activation energy of the conformational change is 43 kJ mol -1 (0.45 eV). The reaction between methyl viologen radicals and the semiquinone of flavodoxin can be described by a normal bimolecular reaction. The reaction is diffusion-controlled with a forward rate constant of (7 +/- 1) X 10(8) M -1S -1 (pH 8, I = 55 mM). The midpoint potential of the semiquinone/hydroquinone was found to be -(408 +/- 5) mV. A consequence of the intermediate state is that flavodoxin (Fld) could be reduced by a two-electron process, the midpoint potential of which should be located between -440 mV less than Em (Fld/FldH-) less than -290 mV. The exact value will depend on the delta G of the conformational change between the fully reduced flavodoxin with its structure in the oxidized form and the fully reduced flavodoxin with its structure in the hydroquinone form. The conditions are discussed under which flavodoxin could behave as a two-electron donor. 相似文献