首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Today, electron microscopy (EM) is increasingly confronted by the revolution in image-processing technology provoked by modern computers. Digital cameras are fast replacing film-based cameras in EM, as elsewhere, and the procedures for digital image-archiving, image-analysis, and image publication are rapidly evolving. To take advantage of these advances, we have chosen for the moment a 'middle road', in which film remains our basic recording medium in the electron microscope, but immediately thereafter, all film-based images are converted to digital files for further analysis and processing. The rationale behind this approach is that film still offers far greater sensitivity and resolution (providing an image equivalent to> 10 000 pixels per inch in a 1-s exposure), and film is still far easier to organize and archive than digital images of comparable resolution. However, digital manipulation of EM images has become mandatory. Hence, we explain here, in some detail, how we convert from film to digital.  相似文献   

2.
A dye cassette fluoresces green (ca 520 nm) in the cytoplasm, endoplasmic reticulum (ER), and lysosomes, but red in mitochondria, that is, it illustrates ‘organelle specific energy transfer’. This phenomenon may open new horizons in intracellular imaging.  相似文献   

3.
For several 2- or 3-dimensional configurations of stationary donors and acceptors on or near a spherical membrane shell the transition probabilities for radiationless energy transfer are calculated, using Förster's approximation obtained for Coulombic dipole-dipole interaction of the transition moments. It turns out that the difference in the refractive indices for membrane (lipid) and bulk phase (water) has only a small influence on the transition probabilities. Furthermore, the curvature of biological cell surfaces can be neglected, but affects the energy transfer across small vesicles. The ratio thickness/radius of small vesicles can be determined by measuring fluorescence quenching of excited donors by acceptors on the other side of the membrane.  相似文献   

4.
The redistribution of platelet membrane proteins in response to platelet activation was studied. To investigate this process we prepared a variety of platelet ligands, including di- and tetrameric concanavalin A, IgG, thrombin, wheat-germ agglutinin and other lectins. These ligands were conjugated either with acceptor (rhodamine isothiocyanate) or donor (fluoresceine isothiocyanate) fluorophore. Platelets exposed to various combinations of ligand species were stimulated with different aggregating agents, and changes in sensitized fluorescence emission or donor quenching were recorded. Energy transfer was observed with thrombin, dimeric concanavalin A after addition of thrombin and various combinations of dimeric concanavalin A with other membrane ligands. The preincubation of platelets with colchicine prevented energy transfer between appropriate ligand pairs and platelet activator. Our studies show that nonradiative energy transfer can be used to analyze redistribution of membrane receptor sites in platelets.  相似文献   

5.
Future developments in cellulosic materials are predicated by the need to understand the fundamental interactions that occur at cellulose fibre interfaces. These interfaces strongly influence the material properties of fibre networks and fibre reinforced composites. This study takes advantage of fluorescence resonance energy transfer (FRET) and fluorescence microscopy to image cellulose interfaces. Steady-state epi-fluorescence microscopy suggests that energy transfer from coumarin dyed fibres to fluorescein dyed fibres is occurring at the fibre–fibre interface. The FRET response for natural spruce fibre interfaces is distinctly different from that observed in synthetic viscose fibres. This approach constitutes a novel methodology for the characterization of soft material interfaces on the molecular scale, and represents a major opportunity for advancing the understanding of fibrous network structures.  相似文献   

6.
In biological microscopy, the ever expanding range of applications requires quantitative approaches that analyze several distinct fluorescent molecules at the same time in the same sample. However, the spectral properties of the fluorescent proteins and dyes presently available set an upper limit to the number of molecules that can be detected simultaneously with common microscopy methods. Spectral imaging and linear unmixing extends the possibilities to discriminate distinct fluorophores with highly overlapping emission spectra and thus the possibilities of multicolor imaging. This method also offers advantages for fast multicolor time-lapse microscopy and fluorescence resonance energy transfer measurements in living samples. Here we discuss recent progress on the technical implementation of the method, its limitations and applications to the imaging of biological samples.  相似文献   

7.
The current advances in fluorescence microscopy, coupled with the development of new fluorescent probes, make fluorescence resonance energy transfer (FRET) a powerful technique for studying molecular interactions inside living cells with improved spatial (angstrom) and temporal (nanosecond) resolution, distance range, and sensitivity and a broader range of biological applications.  相似文献   

8.
Summary— Confocal scanning optical microscopy has significant advantages over conventional fluorescence microscopy: it rejects the out-of-locus light and provides a greater resolution than the wide-field microscope. In laser scanning optical microscopy, the specimen is scanned by a diffraction-limited spot of laser light and the fluorescence emission (or the reflected light) is focused onto a photodetector. The imaged point is then digitized, stored into the memory of a computer and displayed at the appropriate spatial position on a graphic device as a part of a two-dimensional image. Thus, confocal scanning optical microscopy allows accurate non-invasive optical sectioning and further three-dimensional reconstruction of biological specimens. Here we review the recent technological aspects of the principles and uses of the confocal microscope, and we introduce the different methods of three-dimensional imaging.  相似文献   

9.
There is an increasing need for developing simple assay formats for biomedical screening purposes. Assays on cell membranes have become important in studies of receptor-ligand interactions and signal pathways. Here luminescence energy transfer was studied on liposomes containing europium ion chelated to 4,4,4-trifluoro-1-(2-naphthalenyl)-1,3-butanedione and trioctylphosphine oxide. Energy transfer efficiency was characterized with biotin-streptavidin interaction, and a model assay concept for a homogeneous time-resolved luminescence resonance energy transfer (LRET) assay was developed. Acceptor-labeled streptavidin was bound to biotinylated lipids on the liposomes, leading to close proximity of the LRET pair. The liposome-based LRET assay was optimized for dye incorporation and concentration, biotinylation degree, liposome size, and kinetics. Sensitivity for a competitive biotin assay was at a picomolar range with a coefficient of variation from 7 to 20%. The developed lipid membrane-based system was feasible in separation free LRET assay concept with high sensitivity, indicating that the assay principle can potentially be used for biologically more relevant target molecules.  相似文献   

10.
Two‐photon microscopy (2PM) is one of the most widely used tools for in vivo deep tissue imaging. However, the spatial resolution and penetration depth are still limited due to the strong scattering background. Here we demonstrate a two‐photon focal modulation microscopy. By utilizing the modulation and demodulation techniques, background rejection capability is enhanced, thus spatial resolution and imaging penetration depth are improved. Compared with 2PM, the transverse resolution is increased by 70%, while the axial resolution is increased to 2‐fold. Furthermore, when applied in conventional 2PM mode, it can achieve inertial‐free scanning in either transverse or axial direction with in principle unlimited scanning speed. Finally, we applied 2PFMM in thick scattering samples to further examine the imaging performance. The results show that the signal‐to‐background ratio of 2PFMM can be improved up to five times of 2PM at the depth of 500 μm. Fluorescent imaging in the mouse brain tissue. 3D Thy1‐GFP hippocampal neurons imaged by (A) 2PM compared with (B) 2PFMM; (C‐H) xy maximum‐intensity projection imaged by 2PM compared with 2PFMM. Scale bar 50 μm.   相似文献   

11.
Sari Timonen 《Mycorrhiza》1995,5(6):455-458
Sections of Pinus sylvestris-Suillus bovinus ectomycorrhiza were used to test the applicability of time-resolved fluorescence microscopy for studying plant and fungal material. The autofluorescence problems encountered with standard indirect immunofluorescence microscopy when studying specialized plant material were eliminated by the technique. The europium-labeled structures of both plant and fungal cells were the only visible areas in the sections. However, fine details were lost due to the coarse pixel size of the digital camera used to transfer the image on screen. Even with current resolution, time-resolved imaging can be an efficient method for detection of targets in both plant and fungal tissues with autofluorescence problems.  相似文献   

12.
A novel technique for modelling intramolecular energy transfer is presented. Brownian dynamics calculations are used to compute the trajectories of donor and acceptor species, and the instantaneous orientation factor is calculated during each temporal iteration. In this work, several model systems are considered. Trajectories were computed for energy transfer between a flexible donor and a rigidly fixed acceptor. We have considered configurations where the donor is, (1) tethered to a fixed point in space, but free to diffuse rotationally, and (2) constrained to wobble in a cone. The luminescence decay of the donor is ‘measured’, and a non-single-exponential decay is observed for configurations of efficient energy transfer. Luminescence anisotropy measurements of constrained and unconstrained donors reflect the contribution of both energy transfer and rotational diffusion to the shape of the anisotropy decay curve.  相似文献   

13.
As a hybrid optical microscopic imaging technology, photoacoustic microscopy images the optical absorption contrasts and takes advantage of low acoustic scattering of biological tissues to achieve high-resolution anatomical and functional imaging. When combined with other imaging modalities, photoacoustic microscopy-based multimodal technologies can provide complementary contrast mechanisms to reveal complementary information of biological tissues. To achieve intrinsically and precisely registered images in a multimodal photoacoustic microscopy imaging system, either the ultrasonic transducer or the light source can be shared among the different imaging modalities. These technologies are the major focus of this minireview. It also covered the progress of the recently developed penta-modal photoacoustic microscopy imaging system featuring a novel dynamic focusing technique enabled by OCT contour scan.  相似文献   

14.
A limit on the maximum energy transfer rate from the human fat store in hypophagia is deduced from experimental data of underfed subjects maintaining moderate activity levels and is found to have a value of (290+/-25) kJ/kgd. A dietary restriction which exceeds the limited capability of the fat store to compensate for the energy deficiency results in an immediate decrease in the fat free mass (FFM). In cases of a less severe dietary deficiency, the FFM will not be depleted. The transition between these two dietary regions is developed and a criterion to distinguish the regions is defined. An exact mathematical solution for the decrease of the FFM is derived for the case where the fat mass (FM) is in its limited energy transfer mode. The solution shows a steady-state term which is in agreement with conventional ideas, a term indicating a slow decrease of much of the FFM moderated by the limited energy transferred from the fat store, and a final term showing an unprotected rapid decrease of the remaining part of the FFM. The average resting metabolic rate of subjects undergoing hypophagia is shown to decrease linearly as a function of the FFM with a slope of (249+/-25) kJ/kgd. This value disagrees with the results of other observers who have measured metabolic rates of diverse groups. The disagreement is explained in terms of individual metabolic properties as opposed to those of the larger population.  相似文献   

15.
In neural cells, nerve growth factor (NGF) initiates its survival signal through the binding to its cell surface receptor tyrosine kinase A (TrkA). Understanding the pattern of TrkA distribution and association in living cells can provide a fingerprint for the diagnostic comparison with alterations underlying ligand-receptor dysfunction seen in various neurological diseases. In this study, we use the NGF-TrkA-specific interaction as a probe to identify TrkA on living PC12 cell by atomic force microscopy (AFM). An NGF-modified AFM tip was used to perform force volume (FV) imaging, generating a 2D force map to illustrate the distribution and association of TrkA on PC12 cell membrane. It is found that TrkA is highly aggregated at local regions of the cell. This unique protein association may be required to promote its function as a receptor of NGF. The methodology that we developed in this study can be adapted by other systems, thus providing a general tool for investigating protein association in its natural environment.  相似文献   

16.
Electron microscopy (EM) has been a key imaging method to investigate biological ultrastructure for over six decades. In recent years, novel volume EM techniques have significantly advanced nanometre‐scale imaging of cells and tissues in three dimensions. Previously, this had depended on the slow and error‐prone manual tasks of cutting and handling large numbers of sections, and imaging them one‐by‐one with transmission EM. Now, automated volume imaging methods mostly based on scanning EM (SEM) allow faster and more reliable acquisition of serial images through tissue volumes and achieve higher z‐resolution. Various software tools have been developed to manipulate the acquired image stacks and facilitate quantitative analysis. Here, we introduce three volume SEM methods: serial block‐face electron microscopy (SBEM), focused ion beam SEM (FIB‐SEM) and automated tape‐collecting ultramicrotome SEM (ATUM‐SEM). We discuss and compare their capabilities, provide an overview of the full volume SEM workflow for obtaining 3D datasets and showcase different applications for biological research.  相似文献   

17.
Discoveries of major importance in life sciences and preclinical research are linked to the invention of microscopes that enable imaging of cells and their microstructures. Imaging technologies involving in vivo procedures using fluorescent dyes that permit labelling of cells have been developed over the last two decades. Fibered confocal fluorescence microscopy (FCFM) is an imaging technology equipped with fiber‐optic probes to deliver light to organs and tissues of live animals. This enables not only in vivo detection of fluorescent signals and visualization of cells, but also the study of dynamic processes, such cell proliferation, apoptosis and angiogenesis, under physiological and pathological conditions. This will allow the diagnosis of diseased organs and tissues and the evaluation of the efficacy of new therapies in animal models of human diseases. The aim of this report is to shed light on FCFM and its potential medical applications and discusses some factors that compromise the reliability and reproducibility of monitoring biological processes by FCFM. This report also highlights the issues concerning animal experimentation and welfare, and the contributions of FCFM to the 3Rs principals, replacement, reduction and refinement.   相似文献   

18.
We combined Michelson‐interferometer‐based off‐axis digital holographic microscopy (DHM) with a common flow cytometry (FCM) arrangement. Utilizing object recognition procedures and holographic autofocusing during the numerical reconstruction of the acquired off‐axis holograms, sharply focused quantitative phase images of suspended cells in flow were retrieved without labeling, from which biophysical cellular features of distinct cells, such as cell radius, refractive index and dry mass, can be subsequently retrieved in an automated manner. The performance of the proposed concept was first characterized by investigations on microspheres that were utilized as test standards. Then, we analyzed two types of pancreatic tumor cells with different morphology to further verify the applicability of the proposed method for quantitative live cell imaging. The retrieved biophysical datasets from cells in flow are found in good agreement with results from comparative investigations with previously developed DHM methods under static conditions, which demonstrates the effectiveness and reliability of our approach. Our results contribute to the establishment of DHM in imaging FCM and prospect to broaden the application spectrum of FCM by providing complementary quantitative imaging as well as additional biophysical cell parameters which are not accessible in current high‐throughput FCM measurements.  相似文献   

19.
For the improved understanding of biological systems on the nanoscale, it is necessary to enhance the resolution of light microscopy in the visible wavelength range beyond the limits of conventional epifluorescence microscopy (optical resolution of about 200 nm laterally, 600 nm axially). Recently, various far-field methods have been developed allowing a substantial increase of resolution ("superresolution microscopy", or "lightoptical nanoscopy"). This opens an avenue to 'nano-image' intact and even living cells, as well as other biostructures like viruses, down to the molecular detail. Thus, it is possible to combine light optical spatial nanoscale information with ultrastructure analyses and the molecular interaction information provided by molecular cell biology. In this review, we describe the principles of spectrally assigned localization microscopy (SALM) of biological nanostructures, focusing on a special SALM approach, spectral precision distance/position determination microscopy (SPDM) with physically modified fluorochromes (SPDM(Phymod) . Generally, this SPDM method is based on high-precision localization of fluorescent molecules, which can be discriminated using reversibly bleached states of the fluorophores for their optical isolation. A variety of application examples is presented, ranging from superresolution microscopy of membrane and cytoplasmic protein distribution to dual-color SPDM of nuclear proteins. At present, we can achieve an optical resolution of cellular structures down to the 20-nm range, with best values around 5 nm (~1/100 of the exciting wavelength).  相似文献   

20.
The dissipation rate of turbulent kinetic energy (ε) is a key parameter for mixing in surface aerators. In particular, determination ε across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix® calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system, oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号