首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present research concerns anticipatory postural adjustments (APA), with the purpose of determining whether they are preprogrammed and of specifying their biomechanical finality. The experimental situation allowed us to distinguish between the voluntary movement itself (an upper limb elevation) and the postural adjustments associated with it. To this aim, the upper limb kinematics, evaluated from an accelerometer fixed at wrist level, were compared to the whole body dynamics, recorded by means of a force platform. Movements, executed in series of five, were studied according to three conditions: bilateral flexions (BF) and unilateral flexions (UF), with (IUF) and without (OUF) an additional inertia, of the stretched upper limb(s). Six right handed adults were tested twice. Results showed that the ground reaction resultant forces as well as the ground reaction resultant moment about the vertical axis presented reproducible variations before and after the onset of upper limb acceleration. The biomechanical organization of APA corresponded, for the three experimental conditions, to an upward and forward acceleration of the body center of gravity, and also, for UF, to a resultant moment directed towards the contralateral side. The duration of APA varied with the characteristics of the forthcoming voluntary movement, increasing significantly from BF to OUF and from OUF to IUF. It is concluded that APA correspond to dynamic phenomena which are centrally preprogrammed. The inertia forces associated with APA may, when the time comes, balance the inertia forces due to the movement of the mobile limb therefore counteracting the disturbance to postural equilibrium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The goal of this research was to study the postural adjustments that occur during the course of a voluntary movement (Simultaneous Postural Adjustments: SPA). A pointing task performed at maximal velocity was considered and upper limb kinematics and body kinetics were recorded. A 2-DOF model was elaborated that distinguishes between the body segments that are mobilized in order to perform the pointing movement. These segments are the right upper limb (termed the “focal” component) and the rest of the body (termed the “postural” component). This model allowed for the calculation of both sub-systems? kinetics and a comparison of the resultant reaction (RoSh) with the corresponding action (AoSh) at the shoulder level. The analysis was based on the ellipsoidal shape of their relationship. The ellipse computation (“Lissajous ellipse”) allowed the time lag to be estimated. The results showed that the kinetics of the postural component preceded that of the focal ones and that the time lag during the SPA was not statistically different from the APA duration (dAPA). In addition, the kinetics of the postural component were found to be opposed to the perturbation induced by the pointing movement, but only during part of the SPA time interval. It was concluded that the postural component plays a dual role during the movement, which consists of postural stabilization and propulsive action, with one prevailing over the other depending on the time-instant of movement evolution. This new evidence in healthy subjects is helpful to further specify differences associated with motor impairments.  相似文献   

3.
The purpose of this study was to examine whether fatigue of postural muscles might influence the coordination between segmental posture and movement. Seven healthy adults performed series of fifteen fast wrist flexions and extensions while being instructed to keep a dominant upper limb posture as constant as possible. These series of voluntary movements were performed before and after a fatiguing submaximal isometric elbow flexion, and also with or without the help of an elbow support. Surface EMG from muscles Delto?deus anterior, Biceps brachii, Triceps brachii, Flexor carpi ulnaris, Extensor carpi radialis were recorded simultaneously with wrist, elbow and shoulder accelerations and wrist and elbow displacements. Fatigue was evidenced by a shift of the elbow and shoulder muscles EMG spectra towards low frequencies. Kinematics of wrist movements and corresponding activations of wrist prime-movers, as well as the background of postural muscle activation before wrist movement were not modified. There were only slight changes in timing of postural muscle activations. These data indicate that postural fatigue induced by a low-level isometric contraction has no effect on voluntary movement and requires no dramatic adaptation in postural control.  相似文献   

4.
The aim of the present experimental series was to investigate the central organization of the coordination between posture and movement in a bimanual load lifting task. The seated subject was instructed to maintain horizontal one forearm (postural arm) which was loaded with a 1 kg weight. The unloading was performed either by the experimenter (imposed unloading) or by a voluntary movement of the other arm (bimanual unloading). With the bimanual unloading, the movement control was accompanied by an anticipatory adjustment of the postural forearm flexors activity, which resulted in the maintenance of the forearm position despite the unloading. No change in the anticipatory postural adjustment was observed in one patient with complete callosal section. It was reduced in 5 patients with lesion of the SMA region, but only when the postural forearm was contralateral to the lesion. It is suggested that the SMA region contralateral to the postural forearm may select the circuits responsible for the phasic postural adjustments which are necessary to ensure postural maintenance, whereas the motor cortex contralateral to the voluntary movement controls both the movement and, via collaterals, the preselected circuits responsible for the associated postural adjustment.  相似文献   

5.
Anticipatory components of the EMG activity of the postural muscles during a voluntary movement were analyzed to find out how the CNS regulates these components in response to changes in the movement parameters and what information is used for programming these components. The fast lift of an arm in an erect posture was used as a model. The parameters of the movement were modified by varying weights held in the hand (0.5, 1.0, and 1.5 kg) and the preliminary information on these weights: lifting the hand holding a weight and lifting an unknown weight from a support in the absence of information on its value or after receiving verbal information on it. Our experiments showed that the program of maintaining an erect posture while performing a fast voluntary lift of the arm involves anticipatory adjustments of postural muscles (the soleus muscle, biceps muscle of the thigh, and sacrospinal muscle) using information on the parameters of the movement to be performed. For all these muscles, the anticipation time did not depend on either experimental conditions or the velocity of lifting the arm. The duration of the activity and its amount had different dependences on the lifted weight. The parameters of inhibition of the soleus muscle did not depend on the lifted weight, the activity of the biceps muscle of the thigh was mainly regulated by varying its amplitude, and the regulation of the sacrospinal muscle involved both amplitude and duration changes. It was shown that the adjustment of anticipatory movement components can be only based on proprioceptive rather than verbal (conscious) information.  相似文献   

6.
Voluntary arm-raising movement performed during the upright human stance position imposes a perturbation to an already unstable bipedal posture characterised by a high body centre of mass (CoM). Inertial forces due to arm acceleration and displacement of the CoM of the arm which alters the CoM position of the whole body represent the two sources of disequilibrium. A current model of postural control explains equilibrium maintenance through the action of anticipatory postural adjustments (APAs) that would offset any destabilising effect of the voluntary movement. The purpose of this paper was to quantify, using computer simulation, the postural perturbation due to arm raising movement. The model incorporated four links, with shoulder, hip, knee and ankle joints constrained by linear viscoelastic elements. The input of the model was a torque applied at the shoulder joint. The simulation described mechanical consequences of the arm-raising movement for different initial conditions. The variables tested were arm inertia, the presence or not of gravity field, the initial standing position and arm movement direction. Simulations showed that the mechanical effect of arm-raising movement was mainly local, that is to say at the level of trunk and lower limbs and produced a slight forward displacement of the CoM (1.5 mm). Backward arm-raising movement had the same effect on the CoM displacement as the forward arm-raising movement. When the mass of the arm was increased, trunk rotation increased producing a CoM displacement in the opposite direction when compared to arm movement performed without load. Postural disturbance was minimised for an initial standing posture with the CoM vertical projection corresponding to the ankle joint axis of rotation. When the model was reduced to two degrees of freedom (ankle and shoulder joints only) the postural perturbation due to arm-raising movement increased compared to the four-joints model. On the basis of these results the classical assumption that APAs stabilise the CoM is challenged.  相似文献   

7.
To investigate to time course of sensory-motor adaptation to microgravity, we tested spatially-directed voluntary head movements before, during and after short spaceflight. We also tested the re-adaptation of postural responses to sensory stimulation after space flight. The cosmonaut performed in microgravity six cycles of voluntary head rotation in pitch, roll and yaw directions. During the first days of weightlessness the angular velocity of head movements increased. Over the next days of microgravity the velocity of head movements gradually decreased. On landing day a significant decrease of head rotation velocity was observed compared to the head movement velocity before spaceflight. Re-adaptation to Earth condition measured by body sway on soft support showed similar time course, but re-adaptation measured by postural responses to vestibular galvanic stimulation was prolonged. These results showed that the angular velocity of aimed head movements of cosmonauts is a good indicator of sensory-motor adaptation in altered gravity conditions.  相似文献   

8.
It has been shown that there is the silent period preceding the rapid voluntary movement. The present paper is designed to find the mechanisms of this inhibitory phenomenon and to investigate their role in the voluntary movement. The following results were obtained: 1. It was found that the silent period before the movement was observed not only in reaction trials to visual stimulus but also in voluntary trials without stimulus. 2. The silent period were simultaneously recorded from the rectus femoris, the vastus lateralis and the vastus medialis by upward jumping movement. This finding suggested that this inhibitory phenomenon was a change in excitability of motoneurons innervating the quadriceps. 3. When a subject extended his elbow and knee at the same time, the silent period before the movement could be seen in both triceps brachii and vastus medialis. 4. These results suggest that the upper center sends some inhibitory discharge to the motoneurons before the movement. It is supposed that the silent period preceding the voluntary movement plays a major role in the mechanisms of motor control.  相似文献   

9.
Evidence suggests that the primary motor cortex (M1) is involved in both voluntary, goal-directed movements and in postural control. Trunk muscles are involved in both tasks, however, the extent to which M1 controls these muscles in trunk flexion/extension (voluntary movement) and in rapid shoulder flexion (postural control) remains unclear. The purpose of this study was to investigate this question by examining excitability of corticospinal inputs to trunk muscles during voluntary and postural tasks. Twenty healthy adults participated. Transcranial magnetic stimulation was delivered to the M1 to examine motor evoked potentials (MEPs) in the trunk muscles (erector spinae (ES) and rectus abdominis (RA)) during dynamic shoulder flexion (DSF), static shoulder flexion (SSF), and static trunk extension (STE). The level of background muscle activity in the ES muscles was matched across tasks. MEP amplitudes in ES were significantly larger in DSF than in SSF or in STE; however, this was not observed for RA. Further, there were no differences in levels of muscle activity in RA between tasks. Our findings reveal that corticospinal excitability of the ES muscles appears greater during dynamic anticipatory posture-related adjustments than during static tasks requiring postural (SSF) and goal-directed voluntary (STE) activity. These results suggest that task-oriented rehabilitation of trunk muscles should be considered for optimal transfer of therapeutic effect to function.  相似文献   

10.
A total of 225 patients with local verified brain lesions were investigated with a view to identifying the brain regions contributing to organizing postural aspects of voluntary movement. Impaired postural adjustment movements associated with voluntary deep breathing were found in patients with damage primarily to the posterior section of the frontal lobe inferior convolution. Impaired activation of leg and trunk muscles accompanying arm movements were revealed in patients with damage chiefly to the posterior section of the superior convolution of the lobe, including the accessory motor area. It was deduced that postural movements differing in their functional purpose are controlled, like other learned tasks, by different sections of the secondary motor zone of the frontal lobe of the brain.Institute for Information Transmission Studies, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 7–15, January–February, 1988.  相似文献   

11.
Time to stabilization (TTS) has been introduced as a method to analyze dynamic postural stability during jump and landing tasks, but has also been applied during the transition task from double-leg stance (DLS) to single-leg stance (SLS). However, the application of the originally described TTS technique during the latter task has some important limitations. The first goal of this study was to present an adapted version of the TTS technique to provide an effective alternative method to better analyze postural stability during the transition from DLS to SLS. The second goal was to study the influence of pathology and different speeds on postural stability outcomes. Fifteen healthy control subjects and 15 subjects with chronic ankle instability (CAI) performed the transition task on their preferred speed and as fast as possible, with eyes open and with eyes closed. Subjects with CAI performed the transition significantly slower when moving at their preferred speed with eyes closed. The time subjects needed to reach a new stability point was not discriminative between groups and largely dependent on movement speed. However, the amount of sway after this new stability point was significantly increased in the CAI group and when eyes were closed. The results of this study suggest that subjects with CAI have a decreased ability to overcome the postural perturbation created by the voluntary movement from DLS to SLS. Focusing only on TTS during the transition from DLS to SLS may lead at least in some cases to misinterpretations when assessing postural stability.  相似文献   

12.
The capability for the unconscious control of the upright posture in elderly people is impaired, which increases the risk of falls and traumata. The impairment of the unconscious control of posture is partially compensated by the fixation of voluntary attention on the maintenance of an appropriate posture. Elderly people fall predominantly during the performance of movements that demand additional voluntary postural control, for example, unstable support conditions. Thus, voluntary postural control assumes importance in elderly persons. Since it is unclear whether this function changes with age, the aim of this work was to study age-related features of the learning voluntary postural control using visual feedback by center-of-pressure position. The results of the study showed that voluntary postural control is a complex multicomponent process that includes, at least, the following functions: selection of a strategy of postural control, its actualization, and precision of its regulation. With aging, strategy selection in healthy people impairs, but both elderly and middle-aged people can learn this function as successfully as the young. At the same time, despite the absence of an initial deficit in the accuracy of postural setting in elderly people, training of this function becomes substantially more difficult with age.  相似文献   

13.
Head movements, ground reaction forces and electromyographic activity of selected muscles were recorded simultaneously from two subjects as they performed the sit-to-stand manouevre under a variety of conditions. The influence of initial leg posture on the magnitude of the various parameters under investigation was examined first. A preferred initial leg posture resulted in smaller magnitudes of head movement and ground reaction forces. EMG activity in some muscles, trapezius and erector spinae, decreased, while in others, quadriceps and hamstrings, it increased in the preferred leg posture. The decreases seen correlate with reductions in head movement observed. The effect of inhibiting habitual postural adjustments of the head and neck, by comparing "free" and "guided" movements was also examined. In guided movements there are significant reductions in head movement, ground reaction forces and EMG activity in trapezius, sternomastoid and erector spinae. It would appear that both initial leg posture and the abolition of habitual postural adjustment have a profound influence on the efficiency of the sit-to-stand manouevre. This preliminary study high-lights the practical importance of head posture in the diagnosis and treatment of movement disorders, as well as in movement education.  相似文献   

14.
The effects of low-intensity muscle training with heel-raises on dynamic balance associated with bilateral arm flexion were investigated in postmenopausal elderly women. Twenty-six elderly women were evenly grouped into training and control groups. Training group subjects performed 100 heel raises per day for 2 months. The training was aimed at hypertrophy of the soleus muscle, which has a relatively high proportion (ca. 90%) of slow-twitch muscle fibers and is one of the main postural muscles. Dynamic balance was measured while arm flexion was performed in response to a visual stimulus (simple-reaction condition) or at the subjects' own pace (own-timing condition). The following parameters were compared before and after the training period: plantar flexion strength, thicknesses of the gastrocnemius and soleus (by ultrasound), reaction time of the anterior deltoid in the simple-reaction condition, activation onset timing of postural muscles with respect to the deltoid, movement angles of ankle and hip joints, and postural fluctuation. In the training group only, the following training-related effects were demonstrated: (a) increase in plantar flexor strength and thickness of the soleus, (b) shortening of the deltoid reaction time, (c) earlier activation of the erector spinae in the simple-reaction condition and the soleus in the own-timing condition, and (d) increase in ankle movement in the own-timing condition and a decrease in postural fluctuation. This heel-raise training in the elderly can increase soleus thickness within the triceps surae and improve postural control modality and stability that are effectively contributed to by the leg muscle. This training consists of a low-intensity exercise that requires neither special machines nor a specific environment and can be performed safely for all old-aged groups.  相似文献   

15.
Muscle fatigue is associated with reduced power output and work capacity of the skeletal muscle. Fatigue-induced impairments in muscle function are believed to be a potential cause of increased injury rates during the latter stages of athletic competition and often occur during unexpected perturbations. However the effect of fatigue on functionally relevant, full body destabilizing perturbations has not been investigated. This study examines the effect of muscle fatigue on the activation of the quadriceps and hamstrings to fast, full body perturbations evoked by a moveable platform. Surface electromyographic (EMG) signals were recorded from the knee extensor (vastus medialis, rectus femoris, and vastus lateralis) and flexor muscles (biceps femoris and semitendinosus) of the right leg in nine healthy men during full body perturbations performed at baseline and immediately following high intensity exercise performed on a bicycle ergometer. In each condition, participants stood on a moveable platform during which 16 randomized postural perturbations (eight repetitions of two perturbation types: 8 cm forward slides, 8 cm backward slides) with varying inter-perturbation time intervals were performed over a period of 2-3 min. Maximal voluntary knee extension force was measured before and after the high intensity exercise protocol to confirm the presence of fatigue. Immediately after exercise, the maximal force decreased by 63% and 66% for knee extensors and flexors, respectively (P<0.0001). During the post-exercise postural perturbations, the EMG average rectified value (ARV) was significantly lower than the baseline condition for both the knee extensors (average across all muscles; baseline: 19.7±25.4μV, post exercise: 16.2±19.4 μV) and flexors (baseline: 24.3±20.9 μV, post exercise: 13.8±11.0 μV) (both P<0.05). Moreover the EMG onset was significantly delayed for both the knee extensors (baseline: 132.7±32.9 ms, post exercise: 170.8±22.9 ms) and flexors (baseline: 139.1±38.8 ms, post exercise: 179.3±50.9 ms) (both P<0.05). A significant correlation (R(2)=0.53; P<0.05) was identified between the percent reduction of knee extension MVC and the percent change in onset time of the knee extensors post exercise. This study shows that muscle fatigue induces a reduction and delay in the activation of both the quadriceps and hamstring muscles in response to rapid destabilizing perturbations potentially reducing the stability around the knee.  相似文献   

16.
A basal ganglia central pattern generator (CPG) is developed and its role in voluntary movements on the ground and postural reactions on a disturbed platform are studied and analysed by simulation. Biped dynamics and platform kinematics are utilised. The effects of agonist–antagonist muscular co-activation and joint stiffness are formulated. The implementation of the necessary counter-manoeuvres for maintaining balance and postural stability is studied. A control strategy, applicable to large systems, is formulated. The biped manoeuvres and transitions terminate in pre-specified intervals of time. Gravity is included and compensated for. Certain voluntary and postural adjustment strategies are the same but are initiated differently. Further experimental/computational research may identify the central nervous system and sensory paths that lead to the CPG. All actuator forces linearly evolve in time from their original values to their terminal values. There are no central continuous feedback loops present. Monitoring and sensing, however, are ongoing. The counter-manoeuvres are based on learned human-like voluntary movements that are triggered by the disturbance. The required central inputs to the musculoskeletal system are designed in the CPG. A functional structure for the CPG is proposed. The effect of certain disorders and malfunctions of the CPG are studied by simulation.  相似文献   

17.
Voluntary movements of the upper body are accompanied by anticipatory postural adjustments to the lower body in a standing subject. The long-standing hypothesis is that these anticipatory adjustments serve to counteract the perturbation to the body's center of gravity caused by the voluntary arm movement. This paper presents model simulations investigating the possible roles of anticipatory postural activity that accompanies a rapid, upward arm swing. The model encorporates two (idealized) antagonistic muscle pairs controlling the movements of a double-joint system, with a shoulder joint between the arm and stiff body links, and an ankle joint between the stiff body-leg segment and the ground. Each muscle is represented by a nonlinear viscoelastic element and also includes proprioceptive feedback. Four inputs to the model define the motor control signals for muscle force generation in both the arm and the postural muscle pairs. The neurological component of the model describes consequences of alternate strategies for cocontractions, stretch reflex activity, and anticipatory and synchronous postural activities (or combinations thereof). Simulations with this model show that: (1) none of the postural maintenance schemes considered in these simulations (including varying anticipation) could suppress the initial backward thrust on the body link; (2) the more important destabilizing perturbation is a subsequent forward sway that, left uncountered by postural activity, would eventually leave the body to fall flat on its face; and (3) anticipatory silencing of the postural extensor followed by a brief period of extensor activation (descending control) and synchronous reflex activity (feedback control) appears to be the most likely postural stabilizing strategy that inhibits the continuous forward sway and is consistent with the experimental evidence.  相似文献   

18.
The role of the motor cortex was investigated during learning unusual postural adjustment. Healthy subjects held their right (postural) forearm in a horizontal position while supporting a 1-kG load via an electromagnet. The postural forearm position was perturbed by the load release triggered by other elbow voluntary movement. Repetition of the imposed unloading test resulted in a progressive reduction of the maximal forearm rotation, accompanied by the anticipatory decrease in m. biceps brachii activity (learning). Control situation consisted of the voluntary forearm loading. Using the transcranial magnetic stimulation we examined changes in the motor evoked potential of the m. biceps brahii at the beginning and at the end of learning. The evoked potential amplitude did not significantly change in process of the decrease of m. biceps brachii activity. At the end of learning, motor evoked potential / baseline electromyogram ratio increased as compared to the beginning of learning and to the control situation. The results highlight the fundamental role of the motor cortex in suppression of synergies which interfere with formation of a new coordination during motor learning.  相似文献   

19.
The effectivity of the compensatory role of visual biofeedback in cases of decreased stability of upright posture has been analysed. The deterioration of stance was modelled by a subject standing on a soft surface and with additional weight load on the body. The influence of visual biofeedback was positive only for the compensation of decreased stability of upright posture caused by artificially increased body weight of the subject. The compensatory effectivity of visual biofeedback in stabilization of upright posture during stance on a soft surface was practically negligible. The results have shown that effective compensation of the destabilizing effect by visual biofeedback in human upright posture was possible only when the activity and efficiency of efferent-action part of the postural system remained unchanged.  相似文献   

20.
Using magnetic resonance imaging (MRI) in conjunction with synchronized spirometry we analyzed and compared diaphragm movement during tidal breathing and voluntary movement of the diaphragm while breath holding. Breathing cycles of 16 healthy subjects were examined using a dynamic sequence (77 slices in sagittal plane during 20 s, 1NSA, 240x256, TR4.48, TE2.24, FA90, TSE1, FOV 328). The amplitude of movement of the apex and dorsal costophrenic angle of the diaphragm were measured for two test conditions: tidal breathing and voluntary breath holding. The maximal inferior and superior positions of the diaphragm were subtracted from the corresponding positions during voluntary movements while breath holding. The average amplitude of inferio-superior movement of the diaphragm apex during tidal breathing was 27.3+/-10.2 mm (mean +/- SD), and during voluntary movement while breath holding was 32.5+/-16.2 mm. Movement of the costophrenic angle was 39+/-17.6 mm during tidal breathing and 45.5+/-21.2 mm during voluntary movement while breath holding. The inferior position of the diaphragm was lower in 11 of 16 subjects (68.75 %) and identical in 2 of 16 (12.5 %) subjects during voluntary movement compared to the breath holding. Pearson's correlation coefficient was used to demonstrate that movement of the costophrenic angle and apex of the diaphragm had a linear relationship in both examined situations (r=0.876). A correlation was found between the amplitude of diaphragm movement during tidal breathing and lung volume (r=0.876). The amplitude of movement of the diaphragm with or without breathing showed no correlation to each other (r=0.074). The movement during tidal breathing shows a correlation with the changes in lung volumes. Dynamic MRI demonstrated that individuals are capable of moving their diaphragm voluntarily, but the amplitude of movement differs from person to person. In this study, the movements of the diaphragm apex and the costophrenic angle were synchronous during voluntary movement of the diaphragm while breath holding. Although the sample is small, this study confirms that the function of the diaphragm is not only respiratory but also postural and can be voluntarily controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号